Difference between revisions of "1969 AHSME Problems/Problem 23"

(Created page with "== Problem == For any integer <math>n>1</math>, the number of prime numbers greater than <math>n!+1</math> and less than <math>n!+n</math> is: <math>\text{(A) } 0\quad\qquad \t...")
 
(Answer)
Line 9: Line 9:
 
\text{(E) } n</math>
 
\text{(E) } n</math>
  
== Solution ==
+
== Answer ==
 
<math>\fbox{A}</math>
 
<math>\fbox{A}</math>
  

Revision as of 19:25, 2 December 2015

Problem

For any integer $n>1$, the number of prime numbers greater than $n!+1$ and less than $n!+n$ is:

$\text{(A) } 0\quad\qquad \text{(B) } 1\quad\\ \text{(C) } \frac{n}{2} \text{ for n even, } \frac{n+1}{2} \text{ for n odd}\quad\\ \text{(D) } n-1\quad \text{(E) } n$

Answer

$\fbox{A}$

See also

1969 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png