Difference between revisions of "2001 IMO Problems"

m (Problem 1)
m (Problem 2)
Line 4: Line 4:
  
 
==Problem 2==
 
==Problem 2==
 +
 +
Let <math>a,b,c</math> be positive real numbers. Prove that <math>\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\ge 1</math>.
 +
 +
__TOC__
  
 
==Problem 3==
 
==Problem 3==

Revision as of 01:52, 6 October 2014

Problem 1

Consider an acute triangle $\triangle ABC$. Let $P$ be the foot of the altitude of triangle $\triangle ABC$ issuing from the vertex $A$, and let $O$ be the circumcenter of triangle $\triangle ABC$. Assume that $\angle C \geq \angle B+30^{\circ}$. Prove that $\angle A+\angle COP < 90^{\circ}$.

Problem 2

Let $a,b,c$ be positive real numbers. Prove that $\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\ge 1$.

Problem 3

Problem 4

Problem 5

Problem 6

See Also