Difference between revisions of "1973 IMO Problems/Problem 3"
(→Solution) |
|||
Line 6: | Line 6: | ||
Substitute <math>z=x+1/x</math> to change the original equation into <math>z^2+az+b-2=0</math>. This equation has solutions <math>z=\frac{-a \pm \sqrt{a^2+8-4b}}{2}</math>. We also know that <math>|z|=|x+1/x| \geq 2</math>. So, | Substitute <math>z=x+1/x</math> to change the original equation into <math>z^2+az+b-2=0</math>. This equation has solutions <math>z=\frac{-a \pm \sqrt{a^2+8-4b}}{2}</math>. We also know that <math>|z|=|x+1/x| \geq 2</math>. So, | ||
− | <math>|\frac{-a \pm \sqrt{a^2+8-4b}}{2}| \geq 2</math> | + | <math>\left | \frac{-a \pm \sqrt{a^2+8-4b}}{2} \right | \geq 2</math> |
+ | |||
<math>\frac{|a|+\sqrt{a^2+8-4b}}{2} \geq 2</math> | <math>\frac{|a|+\sqrt{a^2+8-4b}}{2} \geq 2</math> | ||
+ | |||
<math>|a|+\sqrt{a^2+8-4b} \geq 4</math> | <math>|a|+\sqrt{a^2+8-4b} \geq 4</math> | ||
Line 13: | Line 15: | ||
<math>a^2+8-4b \geq a^2-16|a|+16</math> | <math>a^2+8-4b \geq a^2-16|a|+16</math> | ||
+ | |||
<math>2|a|-b \geq 2</math> | <math>2|a|-b \geq 2</math> | ||
Revision as of 23:50, 27 November 2017
Let and be real numbers for which the equation has at least one real solution. For all such pairs , find the minimum value of .
Solution
Substitute to change the original equation into . This equation has solutions . We also know that . So,
Rearranging and squaring both sides,
So, .
Therefore, the smallest possible value of is , when and .
Borrowed from http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln733.html