Difference between revisions of "1989 AIME Problems/Problem 15"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Point <math>P^{}_{}</math> is inside <math>\triangle ABC^{}_{}</math>. Line segments <math>APD^{}_{}</math>, <math>BPE^{}_{}</math>, and <math>CPF^{}_{}</math> are drawn with <math>D^{}_{}</math> on <math>BC^{}_{}</math>, <math>E^{}_{}</math> on <math>AC^{}_{}</math>, and <math>F{}{}^{}_{}</math> on <math>AB^{}_{}</math> (see the figure at right). Given that <math>AP=6^{}_{}</math>, <math>BP=9^{}_{}</math>, <math>PD=6^{}_{}</math>, <math>PE=3^{}_{}</math>, and <math>CF=20^{}_{}</math>, find the area of <math>\triangle ABC^{}_{}</math>.
 +
 +
[[Image:AIME_1989_Problem_15.png]]
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
 +
* [[1989 AIME Problems/Problem 14|Previous Problem]]
 
* [[1989 AIME Problems]]
 
* [[1989 AIME Problems]]

Revision as of 22:29, 24 February 2007

Problem

Point $P^{}_{}$ is inside $\triangle ABC^{}_{}$. Line segments $APD^{}_{}$, $BPE^{}_{}$, and $CPF^{}_{}$ are drawn with $D^{}_{}$ on $BC^{}_{}$, $E^{}_{}$ on $AC^{}_{}$, and $F{}{}^{}_{}$ on $AB^{}_{}$ (see the figure at right). Given that $AP=6^{}_{}$, $BP=9^{}_{}$, $PD=6^{}_{}$, $PE=3^{}_{}$, and $CF=20^{}_{}$, find the area of $\triangle ABC^{}_{}$.

AIME 1989 Problem 15.png

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also