Difference between revisions of "Functional equation"
(→See Also) |
m (→The Inverse of a Function) |
||
Line 9: | Line 9: | ||
===The Inverse of a Function=== | ===The Inverse of a Function=== | ||
− | The inverse of a function is a function that "undoes" a function. For an example, consider the function: f(x) | + | The inverse of a function is a function that "undoes" a function. For an example, consider the function: <math>f(x) = x^2 + 6</math>. The function <math>g(x) = \sqrt{x-6}</math> has the property that <math>f(g(x)) = x</math>. In this case, <math>g</math> is called the '''(right) inverse function'''. (Similarly, a function <math>g</math> so that <math>g(f(x))=x</math> is called the '''left inverse function'''. Typically the right and left inverses coincide on a suitable domain, and in this case we simply call the right and left inverse function the '''inverse function'''.) Often the inverse of a function <math>f</math> is denoted by <math>f^{-1}</math>. |
− | |||
− | |||
==Intermediate Topics== | ==Intermediate Topics== |
Revision as of 01:24, 4 July 2017
A functional equation, roughly speaking, is an equation in which some of the unknowns to be solved for are functions. For example, the following are functional equations:
Contents
Introductory Topics
The Inverse of a Function
The inverse of a function is a function that "undoes" a function. For an example, consider the function: . The function has the property that . In this case, is called the (right) inverse function. (Similarly, a function so that is called the left inverse function. Typically the right and left inverses coincide on a suitable domain, and in this case we simply call the right and left inverse function the inverse function.) Often the inverse of a function is denoted by .
Intermediate Topics
Cyclic Functions
A cyclic function is a function that has the property that:
A classic example of such a function is because . Cyclic functions can significantly help in solving functional identities. Consider this problem:
Find such that . In this functional equation, let and let . This yields two new equations:
Now, if we multiply the first equation by 3 and the second equation by 4, and add the two equations, we have:
So, clearly,