Difference between revisions of "2015 AMC 10A Problems/Problem 24"

(Created page with "DO U FIX A CAR BEFORE YOU OPEN DA HOOD DO U EAT DA NOODL BEFORE EATING DA RICE")
 
Line 1: Line 1:
DO U FIX A CAR BEFORE YOU OPEN DA HOOD
+
==Problem 24==
 +
For some positive integers <math>p</math>, there is a quadrilateral <math>ABCD</math> with positive integer side lengths, perimeter <math>p</math>, right angles at <math>B</math> and <math>C</math>, <math>AB=2</math>, and <math>CD=AD</math>.  How many different values of <math>p<2015</math> are possible?
  
DO U EAT DA NOODL BEFORE EATING DA RICE
+
<math>\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63</math>
 +
 
 +
==Solution 24==
 +
Let <math>BC = x</math> and <math>CD = AD = y</math> be positive integers. Drop a perpendicular from <math>A</math> to <math>CD</math> to show that, using the Pythagorean Theorem, that
 +
<cmath>x^2 + (y - 2)^2 = y^2.</cmath>
 +
Simplifying yields <math>x^2 - 4y + 4 = 0</math>, so <math>x^2 = 4(y - 1)</math>. Thus, <math>y</math> is one more than a perfect square.
 +
 
 +
The perimeter <math>p = 2 + x + 2y = 2y + 2\sqrt{y - 1} + 2</math> must be less than 2015. Simple calculations demonstrate that <math>y = 31^2 + 1 = 962</math> is valid, but <math>y = 32^2 + 1 = 1025</math> is not. On the lower side, <math>y = 1</math> does not work (because <math>x > 0</math>), but <math>y = 1^2 + 1</math> does work. Hence, there are 31 valid <math>y</math> (all <math>y</math> such that <math>y = n^2 + 1</math> for <math>1 \le n \le 31</math>), and so our answer is <math>\textbf{(B)}.</math>

Revision as of 18:39, 4 February 2015

Problem 24

For some positive integers $p$, there is a quadrilateral $ABCD$ with positive integer side lengths, perimeter $p$, right angles at $B$ and $C$, $AB=2$, and $CD=AD$. How many different values of $p<2015$ are possible?

$\textbf{(A) }30\qquad\textbf{(B) }31\qquad\textbf{(C) }61\qquad\textbf{(D) }62\qquad\textbf{(E) }63$

Solution 24

Let $BC = x$ and $CD = AD = y$ be positive integers. Drop a perpendicular from $A$ to $CD$ to show that, using the Pythagorean Theorem, that \[x^2 + (y - 2)^2 = y^2.\] Simplifying yields $x^2 - 4y + 4 = 0$, so $x^2 = 4(y - 1)$. Thus, $y$ is one more than a perfect square.

The perimeter $p = 2 + x + 2y = 2y + 2\sqrt{y - 1} + 2$ must be less than 2015. Simple calculations demonstrate that $y = 31^2 + 1 = 962$ is valid, but $y = 32^2 + 1 = 1025$ is not. On the lower side, $y = 1$ does not work (because $x > 0$), but $y = 1^2 + 1$ does work. Hence, there are 31 valid $y$ (all $y$ such that $y = n^2 + 1$ for $1 \le n \le 31$), and so our answer is $\textbf{(B)}.$