Difference between revisions of "2015 AMC 10B Problems/Problem 7"
(Created page with "==Problem== Consider the operation "minus the reciprocal of," defined by <math>a\diamond b=a-\frac{1}{b}</math>. What is <math>((1\diamond2)\diamond3)-(1\diamond(2\diamond3))<...") |
|||
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
− | <math>1\diamond2=1-\dfrac{1}{2}=\dfrac{1}{2}</math>, so <math>(1\diamond2)\diamond3=\dfrac{1}{2}\diamond3=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}</math>. Also, <math>2\diamond3=2-\dfrac{1}{3}=\dfrac{5}{3}</math>, so <math>1\diamond(2\diamond3)=1-\dfrac{1}{5/3}=1-\dfrac{3}{5}=\dfrac{2}{5}</math>. Thus, <math>((1\diamond2)\diamond3)-(1\diamond(2\diamond3))=\boxed{\mathbf{(A)}\ -\dfrac{7}{30}}</math> | + | <math>1\diamond2=1-\dfrac{1}{2}=\dfrac{1}{2}</math>, so <math>(1\diamond2)\diamond3=\dfrac{1}{2}\diamond3=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}</math>. Also, <math>2\diamond3=2-\dfrac{1}{3}=\dfrac{5}{3}</math>, so <math>1\diamond(2\diamond3)=1-\dfrac{1}{5/3}=1-\dfrac{3}{5}=\dfrac{2}{5}</math>. Thus, <math>((1\diamond2)\diamond3)-(1\diamond(2\diamond3))=\dfrac{1}{6}-\dfrac{2}{5}=\boxed{\mathbf{(A)}\ -\dfrac{7}{30}}</math> |
Revision as of 18:13, 4 March 2015
Problem
Consider the operation "minus the reciprocal of," defined by . What is ?
Solution
, so . Also, , so . Thus,