Difference between revisions of "1963 AHSME Problems/Problem 3"
(Created page with "If the reciprocal of <math>x+1</math> is <math>x-1</math>, then <math>x</math> equals: <math>\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ -1\qquad \textbf{(D)}\ ...") |
(→Solution) |
||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
− | We form the equation <math>x+1=\frac{1}{x-1}</math>. | + | We form the equation <math>x+1=\frac{1}{x-1}</math>. |
− | + | Getting rid of the fraction yields: <math>x^2-1=1</math> <math>\implies</math> <math>x^2=2</math> <math>\implies</math> <math>x=\pm{\sqrt{2}}=\boxed{\text{E}}</math> | |
~mathsolver101 | ~mathsolver101 |
Revision as of 16:50, 1 August 2015
If the reciprocal of is , then equals:
Solution
We form the equation .
Getting rid of the fraction yields:
~mathsolver101