Difference between revisions of "User:Negativebplusorminus"
m (→AMCs) |
m (→negativebplusorminus) |
||
Line 8: | Line 8: | ||
===AMCs=== | ===AMCs=== | ||
2012: 17 on AMC 10A, 27.5 on AMC 10B, 1 on AIME, 37.5 index for USAJMO. The cutoff was a 999.5, so I did not qualify for the USAJMO. However, I got 0 on the USAJMO. That thing is hard. | 2012: 17 on AMC 10A, 27.5 on AMC 10B, 1 on AIME, 37.5 index for USAJMO. The cutoff was a 999.5, so I did not qualify for the USAJMO. However, I got 0 on the USAJMO. That thing is hard. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==Equations for the Roots of the Complex== | ==Equations for the Roots of the Complex== |
Revision as of 18:59, 22 September 2015
A AoPS member, National MathCounts qualifier, and USAJMO qualifier.
Contents
Contest Results
MathCounts
In 2011, as a 7th grader, I didn't qualified for the State Countdown Round. In 2012, as an 8th grader, I lost the National MathCounts.
In the National competition, and scores as the worst.
AMCs
2012: 17 on AMC 10A, 27.5 on AMC 10B, 1 on AIME, 37.5 index for USAJMO. The cutoff was a 999.5, so I did not qualify for the USAJMO. However, I got 0 on the USAJMO. That thing is hard.
Equations for the Roots of the Complex
I derived that equation myself, and I am quite proud of it. I have a similar one for the fourth roots of which can be derived from inputting that equation into itself. I have also found various roots of unity in their radical forms during my spare time.
Spirographs
I have created a great number of spirographs, each interesting and unique. More can be found on my AoPS blog (but you might have to look through a few pages of other stuff, too). To view the entire collection, please visit negativebplusorminus.blogspot.com, but again, you might have to scroll down a bit. Here are some samples:
Inspirographs
Another amazing creation of mine. More can be found here (but you might have to look through a few pages of other stuff, too). To view the entire collection, please visit negativebplusorminus.blogspot.com in the near future (the site will be updated soon). Below are a few samples. <asy2> import graph3; import grid3; import palette; size(400,300,IgnoreAspect); defaultrender.merge=true; real f(pair z) {return sin(z.y)*(z.x^2+1)^(0.1*log(z.y^2+1));} surface s=surface(f,(-30,-30),(30,30),70,Spline); s.colors(palette(s.map(zpart),Rainbow())); draw(s,render(compression=Low,merge=true)); grid3(XYZgrid);</asy2> <asy2> import graph3; import grid3; import palette;currentprojection=orthographic(1,5,0.2); size(400,300,IgnoreAspect); defaultrender.merge=true; real f(pair z) {return sin(z.x^2+z.y^2);} surface s=surface(f,(-2.95,-2.95),(2.95,2.95),70,Spline); s.colors(palette(s.map(zpart),Rainbow())); draw(s,render(compression=Low,merge=true)); grid3(XYZgrid);</asy2>