Difference between revisions of "2015 AMC 8 Problems/Problem 21"

(Created page with "In the given figure hexagon <math>ABCDEF</math> is equiangular, <math>ABJI</math> and <math>FEHG</math> are squares with areas <math>18</math> and <math>32</math> respectively...")
 
Line 22: Line 22:
 
label("$18$",(0,6*sqrt(2)+2),N);
 
label("$18$",(0,6*sqrt(2)+2),N);
 
</asy>
 
</asy>
 +
 +
== Solution ==
 +
 +
Clearly, since <math>\overline{FE}</math> is a side of a square with area <math>32</math>, <math>\overlin{FE} = \sqrt{32} = 4 \sqrt{2}</math>. Now, since <math>\overline{FE} = \overline{BC}</math>, we have <math>\overline{BC} = 4 \sqrt{2}</math>.
 +
 +
Now, <math>\overline{AB}</math> is a side of a square with area <math>18</math>, so <math>\overline{AB} = \sqrt{18} = 3 \sqrt{2}</math>. Since <math>\Delta JBK</math> is equilateral, <math>\overline{BK} = 3 \sqrt{2}</math>.
 +
 +
Lastly, <math>\Delta KBC</math> is a right triangle. We see that <math>\angle JBA + \angle ABC + \angle CBK + \angle KBJ = 360 \rightarrow </math>90 + 120 + \angle CBK + 60 = 360 \rightarrow \angle CBK = 90<math>, so </math>\Delta KBC<math> is a right triangle with legs </math>3 \sqrt{2}<math> and </math>4 \sqrt{2}<math>. Now, its area is </math>\dfrac{3 \sqrt{2} \cdot 4 \sqrt{2}}{2} = \dfrac{24}{2} = \dfrac{12}<math>, and our answer is </math>\boxed{\text{C}}$.

Revision as of 15:27, 25 November 2015

In the given figure hexagon $ABCDEF$ is equiangular, $ABJI$ and $FEHG$ are squares with areas $18$ and $32$ respectively, $\triangle JBK$ is equilateral and $FE=BC$. What is the area of $\triangle KBC$?

$\textbf{(A) }6\sqrt{2}\quad\textbf{(B) }9\quad\textbf{(C) }12\quad\textbf{(D) }9\sqrt{2}\quad\textbf{(E) }32$. [asy] draw((-4,6*sqrt(2))--(4,6*sqrt(2))); draw((-4,-6*sqrt(2))--(4,-6*sqrt(2))); draw((-8,0)--(-4,6*sqrt(2))); draw((-8,0)--(-4,-6*sqrt(2))); draw((4,6*sqrt(2))--(8,0)); draw((8,0)--(4,-6*sqrt(2))); draw((-4,6*sqrt(2))--(4,6*sqrt(2))--(4,8+6*sqrt(2))--(-4,8+6*sqrt(2))--cycle); draw((-8,0)--(-4,-6*sqrt(2))--(-4-6*sqrt(2),-4-6*sqrt(2))--(-8-6*sqrt(2),-4)--cycle); label("$I$",(-4,8+6*sqrt(2)),dir(100)); label("$J$",(4,8+6*sqrt(2)),dir(80)); label("$A$",(-4,6*sqrt(2)),dir(280)); label("$B$",(4,6*sqrt(2)),dir(250)); label("$C$",(8,0),W); label("$D$",(4,-6*sqrt(2)),NW); label("$E$",(-4,-6*sqrt(2)),NE); label("$F$",(-8,0),E); draw((4,8+6*sqrt(2))--(4,6*sqrt(2))--(4+4*sqrt(3),4+6*sqrt(2))--cycle); label("$K$",(4+4*sqrt(3),4+6*sqrt(2)),E); draw((4+4*sqrt(3),4+6*sqrt(2))--(8,0),dashed); label("$H$",(-4-6*sqrt(2),-4-6*sqrt(2)),S); label("$G$",(-8-6*sqrt(2),-4),W); label("$32$",(-10,-8),N); label("$18$",(0,6*sqrt(2)+2),N); [/asy]

Solution

Clearly, since $\overline{FE}$ is a side of a square with area $32$, $\overlin{FE} = \sqrt{32} = 4 \sqrt{2}$ (Error compiling LaTeX. Unknown error_msg). Now, since $\overline{FE} = \overline{BC}$, we have $\overline{BC} = 4 \sqrt{2}$.

Now, $\overline{AB}$ is a side of a square with area $18$, so $\overline{AB} = \sqrt{18} = 3 \sqrt{2}$. Since $\Delta JBK$ is equilateral, $\overline{BK} = 3 \sqrt{2}$.

Lastly, $\Delta KBC$ is a right triangle. We see that $\angle JBA + \angle ABC + \angle CBK + \angle KBJ = 360 \rightarrow$90 + 120 + \angle CBK + 60 = 360 \rightarrow \angle CBK = 90$, so$\Delta KBC$is a right triangle with legs$3 \sqrt{2}$and$4 \sqrt{2}$. Now, its area is$\dfrac{3 \sqrt{2} \cdot 4 \sqrt{2}}{2} = \dfrac{24}{2} = \dfrac{12}$, and our answer is$\boxed{\text{C}}$.