Difference between revisions of "H�lder's Inequality"
ComplexZeta (talk | contribs) |
|||
Line 8: | Line 8: | ||
<center><math>\frac{|f(x)|}{||f||_p}\frac{|g(x)|}{||g||_q}\leq \frac{1}{p}\frac{|f(x)|^p}{||f||_p^p}+\frac{1}{q}\frac{|g(x)|^q}{||g||_q^q}.</math></center> These functions are measurable, so by integrating we get | <center><math>\frac{|f(x)|}{||f||_p}\frac{|g(x)|}{||g||_q}\leq \frac{1}{p}\frac{|f(x)|^p}{||f||_p^p}+\frac{1}{q}\frac{|g(x)|^q}{||g||_q^q}.</math></center> These functions are measurable, so by integrating we get | ||
<center><math>\frac{||fg||_1}{||f||_p||g||_q}\leq\frac{1}{p}\frac{||f(x)||^p}{||f||_p^p}+\frac{1}{q}\frac{||g(x)||^q}{||g||_q^q}=\frac{1}{p}+\frac{1}{q}=1</math>.</center> | <center><math>\frac{||fg||_1}{||f||_p||g||_q}\leq\frac{1}{p}\frac{||f(x)||^p}{||f||_p^p}+\frac{1}{q}\frac{||g(x)||^q}{||g||_q^q}=\frac{1}{p}+\frac{1}{q}=1</math>.</center> | ||
+ | |||
+ | |||
+ | {{stub}} |