Difference between revisions of "1962 AHSME Problems/Problem 13"
m (added answer) |
(→Solution) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | <math> \boxed{B} </math> | + | |
+ | <cmath>R=c\cdot\frac{S}T</cmath> | ||
+ | |||
+ | for some constant <math>c</math>. | ||
+ | |||
+ | You know that | ||
+ | |||
+ | <cmath>\frac43=c\cdot\frac{3/7}{9/14}=c\cdot\frac37\cdot\frac{14}9=\frac23\,,</cmath> | ||
+ | |||
+ | so | ||
+ | |||
+ | <cmath>c=\frac{4/3}{2/3}=2\,.</cmath> | ||
+ | |||
+ | When <math>R=\sqrt{48}</math> and <math>T=\sqrt{75}</math> we have | ||
+ | |||
+ | <cmath>\sqrt{48}=\frac{2S}{\sqrt{75}}\,,</cmath> | ||
+ | |||
+ | so | ||
+ | |||
+ | <cmath>S=\frac12\sqrt{48\cdot75}=30\,.</cmath> <math> \boxed{B} </math> | ||
+ | |||
+ | -- zixuan 12 | ||
+ | |||
==See Also== | ==See Also== | ||
{{AHSME 40p box|year=1962|before=Problem 12|num-a=14}} | {{AHSME 40p box|year=1962|before=Problem 12|num-a=14}} |
Revision as of 21:22, 9 January 2021
Problem
varies directly as and inverse as . When and , . Find when and .
Solution
for some constant .
You know that
so
When and we have
so
-- zixuan 12
See Also
1962 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.