Difference between revisions of "1962 AHSME Problems/Problem 13"

m (added answer)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
<math> \boxed{B} </math>
+
 
 +
<cmath>R=c\cdot\frac{S}T</cmath>
 +
 
 +
for some constant <math>c</math>.
 +
 
 +
You know that
 +
 
 +
<cmath>\frac43=c\cdot\frac{3/7}{9/14}=c\cdot\frac37\cdot\frac{14}9=\frac23\,,</cmath>
 +
 
 +
so
 +
 
 +
<cmath>c=\frac{4/3}{2/3}=2\,.</cmath>
 +
 
 +
When <math>R=\sqrt{48}</math> and <math>T=\sqrt{75}</math> we have
 +
 
 +
<cmath>\sqrt{48}=\frac{2S}{\sqrt{75}}\,,</cmath>
 +
 
 +
so
 +
 
 +
<cmath>S=\frac12\sqrt{48\cdot75}=30\,.</cmath> <math> \boxed{B} </math>
 +
 
 +
-- zixuan 12
 +
 
 
==See Also==
 
==See Also==
 
{{AHSME 40p box|year=1962|before=Problem 12|num-a=14}}
 
{{AHSME 40p box|year=1962|before=Problem 12|num-a=14}}

Revision as of 21:22, 9 January 2021

Problem

$R$ varies directly as $S$ and inverse as $T$. When $R = \frac{4}{3}$ and $T = \frac {9}{14}$, $S = \frac37$. Find $S$ when $R = \sqrt {48}$ and $T = \sqrt {75}$.

$\textbf{(A)}\ 28\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60$

Solution

\[R=c\cdot\frac{S}T\]

for some constant $c$.

You know that

\[\frac43=c\cdot\frac{3/7}{9/14}=c\cdot\frac37\cdot\frac{14}9=\frac23\,,\]

so

\[c=\frac{4/3}{2/3}=2\,.\]

When $R=\sqrt{48}$ and $T=\sqrt{75}$ we have

\[\sqrt{48}=\frac{2S}{\sqrt{75}}\,,\]

so

\[S=\frac12\sqrt{48\cdot75}=30\,.\] $\boxed{B}$

-- zixuan 12

See Also

1962 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png