Difference between revisions of "2006 AMC 12A Problems/Problem 1"

(Solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
Sandwiches at Joe's Fast Food cost <math>$3</math> each and sodas cost <math>$2</math> each. How many dollars will it cost to purchase <math>5</math> sandwiches and <math>8</math> sodas?
+
Sandwiches at Joe's Fast Food cost 3 dollars each and sodas cost 2 dollars each. How many dollars will it cost to purchase <math>5</math> sandwiches and <math>8</math> sodas?
  
 
<math> \mathrm{(A) \ } 31\qquad \mathrm{(B) \ } 32\qquad \mathrm{(C) \ } 33\qquad \mathrm{(D) \ } 34</math>
 
<math> \mathrm{(A) \ } 31\qquad \mathrm{(B) \ } 32\qquad \mathrm{(C) \ } 33\qquad \mathrm{(D) \ } 34</math>
Line 9: Line 9:
 
== Solution ==
 
== Solution ==
  
The <math>5</math> sandwiches cost <math>5\cdot 3=15</math> dollars.  The <math>8</math> sodas cost <math>8\cdot 2=16</math> dollars.  In total, the purchase costs <math>15+16=31</math> dollars.  The answer is A.
+
The <math>5</math> sandwiches cost <math>5\cdot 3=15</math> dollars.  The <math>8</math> sodas cost <math>8\cdot 2=16</math> dollars.  In total, the purchase costs <math>15+16=31</math> dollars.  The answer is <math>\mathrm{(A) \ }</math>.
  
 
== See also ==
 
== See also ==
 
* [[2006 AMC 12A Problems]]
 
* [[2006 AMC 12A Problems]]

Revision as of 18:09, 29 July 2006

Problem

Sandwiches at Joe's Fast Food cost 3 dollars each and sodas cost 2 dollars each. How many dollars will it cost to purchase $5$ sandwiches and $8$ sodas?

$\mathrm{(A) \ } 31\qquad \mathrm{(B) \ } 32\qquad \mathrm{(C) \ } 33\qquad \mathrm{(D) \ } 34$

$\mathrm{(E) \ } 35$

Solution

The $5$ sandwiches cost $5\cdot 3=15$ dollars. The $8$ sodas cost $8\cdot 2=16$ dollars. In total, the purchase costs $15+16=31$ dollars. The answer is $\mathrm{(A) \ }$.

See also