Difference between revisions of "2016 AMC 12A Problems/Problem 4"

(Solution)
(Redirected to matching 10A problem)
 
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2016 AMC 10A Problems/Problem 7]]
 
 
The mean, median, and mode of the 7 data values <math>60,100,x,40,50,200,90</math> are all equal to <math>x</math>.
 
What is the value of <math>x</math>?
 
 
 
<math>\textbf{(A)}\ 50\qquad\textbf{(B)}\ 60\qquad\textbf{(C)}\ 75\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 100</math>
 
 
 
 
 
==Solution==
 
<math>x</math> must be in the middle of the list. Order the known list first: <math>\{40,50,60,90,100,200\}</math>.
 
<math>x</math> occurs the most times, and it is the average of the list.
 
 
 
<math>\#1:</math>
 
<math>x</math> is either <math>60</math> or <math>90</math> because it is the median and the mode.
 
 
 
<math>\#2:</math>
 
<math>x</math> is the average of the set values.
 
<cmath>x=\frac{40+50+60+90+100+200+x}{7}</cmath>
 
<cmath>x=\frac{540+x}{7}</cmath>
 
<cmath>7x=540+x</cmath>
 
<cmath>6x=540</cmath>
 
<cmath>x=\boxed{\textbf{(D)}\text{ 90}}</cmath>
 
 
 
==See Also==
 
{{AMC12 box|year=2016|ab=A|num-b=3|num-a=5}}
 
{{MAA Notice}}
 

Latest revision as of 11:54, 4 February 2016