Difference between revisions of "1983 AHSME Problems/Problem 25"

Line 1: Line 1:
Problem:
+
==Problem 25==
 
If <math>60^a=3</math> and <math>60^b=5</math>, then <math>12^[(1-a-b)/2(1-b)]</math> is
 
If <math>60^a=3</math> and <math>60^b=5</math>, then <math>12^[(1-a-b)/2(1-b)]</math> is
  
 
<math>\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 2\sqrt{3}\qquad</math>
 
<math>\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 2\sqrt{3}\qquad</math>
  
Solution: Since <math>12 = 60/5</math>, <math>12 = 60/(60^b)</math>= <math>60^{(1-b)}</math>
+
==Solution==  
 +
Since <math>12 = 60/5</math>, <math>12 = 60/(60^b)</math>= <math>60^{(1-b)}</math>
  
 
So we can rewrite <math>12^{[(1-a-b)/2(1-b)]}</math> as <math>60^{[(1-b)(1-a-b)/2(1-b)]}</math>
 
So we can rewrite <math>12^{[(1-a-b)/2(1-b)]}</math> as <math>60^{[(1-b)(1-a-b)/2(1-b)]}</math>
Line 16: Line 17:
 
<math>4^{(1/2)} = 2</math>
 
<math>4^{(1/2)} = 2</math>
  
Answer:<math>B</math>
+
Answer:\fbox{<math>\textbf{B}</math>}.

Revision as of 05:31, 18 May 2016

Problem 25

If $60^a=3$ and $60^b=5$, then $12^[(1-a-b)/2(1-b)]$ is

$\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ \sqrt{5}\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 2\sqrt{3}\qquad$

Solution

Since $12 = 60/5$, $12 = 60/(60^b)$= $60^{(1-b)}$

So we can rewrite $12^{[(1-a-b)/2(1-b)]}$ as $60^{[(1-b)(1-a-b)/2(1-b)]}$

this simplifies to $60^{[(1-a-b)/2]}$

which can be rewritten as $(60^{(1-a-b)})^{(1/2)}$

$60^{(1-a-b)} = 60^1/[(60^a)(60^b)] = 60/(3*5) = 4$

$4^{(1/2)} = 2$

Answer:\fbox{$\textbf{B}$}.