Difference between revisions of "2006 AMC 10B Problems/Problem 21"
m (proofreading) |
m (wikified) |
||
Line 3: | Line 3: | ||
<math> \mathrm{(A) \ } \frac{4}{63}\qquad \mathrm{(B) \ } \frac{1}{8}\qquad \mathrm{(C) \ } \frac{8}{63}\qquad \mathrm{(D) \ } \frac{1}{6}\qquad \mathrm{(E) \ } \frac{2}{7} </math> | <math> \mathrm{(A) \ } \frac{4}{63}\qquad \mathrm{(B) \ } \frac{1}{8}\qquad \mathrm{(C) \ } \frac{8}{63}\qquad \mathrm{(D) \ } \frac{1}{6}\qquad \mathrm{(E) \ } \frac{2}{7} </math> | ||
+ | |||
== Solution == | == Solution == | ||
− | Let <math>x</math> be the probability of rolling a <math>1</math>. The probabilities of rolling a | + | Let <math>x</math> be the [[probability]] of rolling a <math>1</math>. The probabilities of rolling a |
<math>2</math>, <math>3</math>, <math>4</math>, <math>5</math>, and <math>6</math> are <math>2x</math>, <math>3x</math>, <math>4x</math>, <math>5x</math>, and <math>6x</math>. | <math>2</math>, <math>3</math>, <math>4</math>, <math>5</math>, and <math>6</math> are <math>2x</math>, <math>3x</math>, <math>4x</math>, <math>5x</math>, and <math>6x</math>. | ||
Revision as of 12:46, 18 July 2006
Problem
For a particular peculiar pair of dice, the probabilities of rolling , , , , , and , on each die are in the ratio . What is the probability of rolling a total of on the two dice?
Solution
Let be the probability of rolling a . The probabilities of rolling a , , , , and are , , , , and .
Since the sum of the probabilities of rolling each number must equal 1:
So the probabilities of rolling a , , , , , and are , ,,,,.
The possible combinations of two rolls that total are:
The probability of rolling a total of on the two dice is equal to the sum of the probabilities of rolling each combination.