Difference between revisions of "1990 IMO Problems/Problem 4"

(Created page with "4. Let <math>\mathbb{Q^+}</math> be the set of positive rational numbers. Construct a function <math>f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}</math> such that <math>f(xf(y)) = \...")
 
Line 1: Line 1:
4. Let <math>\mathbb{Q^+}</math> be the set of positive rational numbers. Construct a function <math>f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}</math> such that <math>f(xf(y)) = \frac{f(x)}{y}</math> for all $x, y\in{Q^+}.
+
4. Let <math>\mathbb{Q^+}</math> be the set of positive rational numbers. Construct a function <math>f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}</math> such that <math>f(xf(y)) = \frac{f(x)}{y}</math> for all <math>x, y\in{Q^+}</math>.

Revision as of 04:51, 5 July 2016

4. Let $\mathbb{Q^+}$ be the set of positive rational numbers. Construct a function $f :\mathbb{Q^+}\rightarrow\mathbb{Q^+}$ such that $f(xf(y)) = \frac{f(x)}{y}$ for all $x, y\in{Q^+}$.