Difference between revisions of "1969 Canadian MO Problems/Problem 5"

 
(box)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math>\displaystyle ABC</math> be a triangle with sides of length <math>\displaystyle a</math>, <math>\displaystyle b</math> and <math>\displaystyle c</math>. Let the bisector of the <math>\displaystyle \angle C</math> cut <math>\displaystyle AB</math> at <math>\displaystyle D</math>. Prove that the length of <math>\displaystyle CD</math> is <math>\displaystyle \frac{2ab\cos \frac{C}{2}}{a+b}.</math>
+
Let <math>ABC</math> be a triangle with sides of length <math>a</math>, <math>b</math> and <math>c</math>. Let the bisector of the <math>\angle C</math> cut <math>AB</math> at <math>D</math>. Prove that the length of <math>CD</math> is <math>\frac{2ab\cos \frac{C}{2}}{a+b}.</math>
  
  
 
== Solution ==
 
== Solution ==
Let <math>\displaystyle CD=d.</math> Note that <math>\displaystyle [\triangle ABC]=[\triangle ACD]+[\triangle BCD].</math> This can be rewritten as <math>\displaystyle \frac12 a b \sin C=\frac12 a d \sin \frac C2 +\frac12 b d \sin \frac C2 .</math>
+
Let <math>CD=d.</math> Note that <math>[\triangle ABC]=[\triangle ACD]+[\triangle BCD].</math> This can be rewritten as <math>\frac12 a b \sin C=\frac12 a d \sin \frac C2 +\frac12 b d \sin \frac C2 .</math>
  
Because <math>\displaystyle \sin C=2\sin \frac C2 \cos \frac C2,</math> the expression can be written as <math>\displaystyle2ab\cos \frac C2=d(a+b).</math> Dividing by <math>\displaystyle a+b,</math> <math>CD=\frac{2ab\cos \frac C2}{a+b},</math> as desired.
+
Because <math>\sin C=2\sin \frac C2 \cos \frac C2,</math> the expression can be written as <math>2ab\cos \frac C2=d(a+b).</math> Dividing by <math>a+b,</math> <math>CD=\frac{2ab\cos \frac C2}{a+b},</math> as desired.
  
----
+
{{Old CanadaMO box|num-b=1|num-a=3|year=1969}}
* [[1969 Canadian MO Problems/Problem 4|Previous Problem]]
 
* [[1969 Canadian MO Problems/Problem 6|Next Problem]]
 
* [[1969 Canadian MO Problems|Back to Exam]]
 

Revision as of 21:40, 17 November 2007

Problem

Let $ABC$ be a triangle with sides of length $a$, $b$ and $c$. Let the bisector of the $\angle C$ cut $AB$ at $D$. Prove that the length of $CD$ is $\frac{2ab\cos \frac{C}{2}}{a+b}.$


Solution

Let $CD=d.$ Note that $[\triangle ABC]=[\triangle ACD]+[\triangle BCD].$ This can be rewritten as $\frac12 a b \sin C=\frac12 a d \sin \frac C2 +\frac12 b d \sin \frac C2 .$

Because $\sin C=2\sin \frac C2 \cos \frac C2,$ the expression can be written as $2ab\cos \frac C2=d(a+b).$ Dividing by $a+b,$ $CD=\frac{2ab\cos \frac C2}{a+b},$ as desired.

1969 Canadian MO (Problems)
Preceded by
Problem 1
1 2 3 4 5 6 7 8 Followed by
Problem 3