Difference between revisions of "Divisor"
m |
|||
Line 1: | Line 1: | ||
− | + | A [[natural number]] <math>\displaystyle{d}</math> is called a '''divisor''' of a natural number <math>\displaystyle{n}</math> if there is a natural number <math>\displaystyle{k}</math> such that <math>n=kd</math> or, in other words, if <math>\displaystyle\frac nd</math> is also a natural number (i.e <math>d</math> divides <math>n</math>). See [[Divisibility]] for more information. | |
− | |||
== Notation== | == Notation== |
Revision as of 08:36, 11 August 2006
A natural number is called a divisor of a natural number if there is a natural number such that or, in other words, if is also a natural number (i.e divides ). See Divisibility for more information.
Notation
A common notation to indicate a number is a divisor of another is . This means that divides .
See main article, Counting divisors. If is the prime factorization of , then the number of different divisors of is given by the formula . It is often useful to know that this expression grows slower than any positive power of as . Another useful idea is that is odd if and only if is a perfect square.
Useful formulae
- If and are relatively prime, then