Difference between revisions of "1961 AHSME Problems/Problem 33"

m
Line 3: Line 3:
 
The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is:
 
The number of solutions of <math>2^{2x}-3^{2y}=55</math>, in which <math>x</math> and <math>y</math> are integers, is:
  
<math> \textbf{(A)} \ 0 \qquad\textbf{(B)} \ 1 \qquad \textbf{(C)} \ 2 \qquad\textbf{(D)} \ 3}\qquad \textbf{(E)} \ \text{More than three, but finite} </math>
+
<cmath>\textbf{(A)} \ 0 \qquad\textbf{(B)} \ 1 \qquad \textbf{(C)} \ 2 \qquad\textbf{(D)} \ 3\qquad \textbf{(E)} \ \text{More than three, but finite}</cmath>
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:25, 5 September 2017

Problem 33

The number of solutions of $2^{2x}-3^{2y}=55$, in which $x$ and $y$ are integers, is:

\[\textbf{(A)} \ 0 \qquad\textbf{(B)} \ 1 \qquad \textbf{(C)} \ 2 \qquad\textbf{(D)} \ 3\qquad \textbf{(E)} \ \text{More than three, but finite}\] The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png