Difference between revisions of "1997 JBMO Problems"

m
Line 19: Line 19:
  
 
Let <math>n_1</math>, <math>n_2</math>, <math>\ldots</math>, <math>n_{1998}</math> be positive integers such that <cmath> n_1^2 + n_2^2 + \cdots + n_{1997}^2 = n_{1998}^2. </cmath> Show that at least two of the numbers are even.
 
Let <math>n_1</math>, <math>n_2</math>, <math>\ldots</math>, <math>n_{1998}</math> be positive integers such that <cmath> n_1^2 + n_2^2 + \cdots + n_{1997}^2 = n_{1998}^2. </cmath> Show that at least two of the numbers are even.
 +
 +
==See also==
 +
{{JBMO box|year=1997|before=First Olympiad|after=[[1998 JBMO Problems]]}}

Revision as of 17:25, 15 September 2017

Problem 1

(Bulgaria) Show that given any 9 points inside a square of side length 1 we can always find 3 that form a triangle with area less than $\frac{1}{8}$

Problem 2

(Cyprus) Let $\frac{x^2+y^2}{x^2-y^2} + \frac{x^2-y^2}{x^2+y^2} = k$. Compute the following expression in terms of $k$: \[E(x,y) = \frac{x^8 + y^8}{x^8-y^8} - \frac{ x^8-y^8}{x^8+y^8}.\]

Problem 3

(Greece) Let $ABC$ be a triangle and let $I$ be the incenter. Let $N$, $M$ be the midpoints of the sides $AB$ and $CA$ respectively. The lines $BI$ and $CI$ meet $MN$ at $K$ and $L$ respectively. Prove that $AI+BI+CI>BC+KL$.

Problem 4

(Romania) Determine the triangle with sides $a,b,c$ and circumradius $R$ for which $R(b+c) = a\sqrt{bc}$.

Problem 5

Let $n_1$, $n_2$, $\ldots$, $n_{1998}$ be positive integers such that \[n_1^2 + n_2^2 + \cdots + n_{1997}^2 = n_{1998}^2.\] Show that at least two of the numbers are even.

See also

1997 JBMO (ProblemsResources)
Preceded by
First Olympiad
Followed by
1998 JBMO Problems
1 2 3 4 5
All JBMO Problems and Solutions