Difference between revisions of "Bretschneider's formula"

m
m
Line 1: Line 1:
Suppose we have a [[quadrilateral]] with [[side]]s of length <math>a,b,c,d</math> (in that order) and [[diagonal]]s of length <math>p, q</math>. '''Bretschneider's formula''' states that the [[area]]
+
Suppose we have a [[quadrilateral]] with [[edge]]s of length <math>a,b,c,d</math> (in that order) and [[diagonal]]s of length <math>p, q</math>. '''Bretschneider's formula''' states that the [[area]]
 
<math>[ABCD]=\frac{1}{4}*\sqrt{4p^2q^2-(b^2+d^2-a^2-c^2)^2}</math>.
 
<math>[ABCD]=\frac{1}{4}*\sqrt{4p^2q^2-(b^2+d^2-a^2-c^2)^2}</math>.
  

Revision as of 23:18, 10 November 2006

Suppose we have a quadrilateral with edges of length $a,b,c,d$ (in that order) and diagonals of length $p, q$. Bretschneider's formula states that the area $[ABCD]=\frac{1}{4}*\sqrt{4p^2q^2-(b^2+d^2-a^2-c^2)^2}$.

It can be derived with vector geometry.

See Also

This article is a stub. Help us out by expanding it.