Difference between revisions of "2018 AMC 10B Problems/Problem 10"

(Solution)
Line 42: Line 42:
  
 
==Solution==
 
==Solution==
Consider the cross-sectional plane. Note that <math>bh/2=3</math> and we want <math>bh/3</math>, so the answer is <math>2</math>
+
Consider the cross-sectional plane. Note that <math>bh/2=3</math> and we want <math>bh/3</math>, so the answer is <math>2</math> (AOPS12142015)

Revision as of 14:54, 16 February 2018

In the rectangular parallelpiped shown, $AB$ = $3$, $BC$ = $1$, and $CG$ = $2$. Point $M$ is the midpoint of $\overline{FG}$. What is the volume of the rectangular pyramid with base $BCHE$ and apex $M$?


[asy]  size(250); defaultpen(fontsize(10pt)); pair A =origin; pair B = (4.75,0); pair E1=(0,3); pair F = (4.75,3); pair G = (5.95,4.2); pair C = (5.95,1.2); pair D = (1.2,1.2); pair H= (1.2,4.2); pair M = ((4.75+5.95)/2,3.6); draw(E1--M--H--E1--A--B--E1--F--B--M--C--G--H); draw(B--C); draw(F--G); draw(A--D--H--C--D,dashed); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,E); label("$D$",D,W); label("$E$",E1,W); label("$F$",F,SW); label("$G$",G,NE); label("$H$",H,NW); label("$M$",M,N); dot(A); dot(B); dot(E1); dot(F); dot(G); dot(C); dot(D); dot(H); dot(M);[/asy]


$\textbf{(A) } 1 \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{5}{3} \qquad \textbf{(E) } 2$

Solution

Consider the cross-sectional plane. Note that $bh/2=3$ and we want $bh/3$, so the answer is $2$ (AOPS12142015)