Difference between revisions of "1969 IMO Problems/Problem 2"
Durianaops (talk | contribs) (Created page with "Let <math>a_1, a_2,\cdots, a_n</math> be real constants, <math>x</math> a real variable, and <cmath>f(x)=\cos(a_1+x)+\frac{1}{2}\cos(a_2+x)+\frac{1}{4}\cos(a_3+x)+\cdots+\frac...") |
Durianaops (talk | contribs) m |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Let <math>a_1, a_2,\cdots, a_n</math> be real constants, <math>x</math> a real variable, and <cmath>f(x)=\cos(a_1+x)+\frac{1}{2}\cos(a_2+x)+\frac{1}{4}\cos(a_3+x)+\cdots+\frac{1}{2^{n-1}}\cos(a_n+x).</cmath> Given that <math>f(x_1)=f(x_2)=0,</math> prove that <math>x_2-x_1=m\pi</math> for some integer <math>m.</math> | Let <math>a_1, a_2,\cdots, a_n</math> be real constants, <math>x</math> a real variable, and <cmath>f(x)=\cos(a_1+x)+\frac{1}{2}\cos(a_2+x)+\frac{1}{4}\cos(a_3+x)+\cdots+\frac{1}{2^{n-1}}\cos(a_n+x).</cmath> Given that <math>f(x_1)=f(x_2)=0,</math> prove that <math>x_2-x_1=m\pi</math> for some integer <math>m.</math> | ||
− |
Revision as of 13:50, 17 February 2018
Problem
Let be real constants, a real variable, and Given that prove that for some integer