Difference between revisions of "2000 AMC 10 Problems/Problem 7"

m (Solution)
m (See Also)
Line 56: Line 56:
  
 
<math>\boxed{\text{B}}</math>
 
<math>\boxed{\text{B}}</math>
 
==See Also==
 
 
{{AMC10 box|year=2000|num-b=6|num-a=8}}
 
{{MAA Notice}}
 

Revision as of 16:25, 29 April 2018

Problem

In rectangle $ABCD$, $AD=1$, $P$ is on $\overline{AB}$, and $\overline{DB}$ and $\overline{DP}$ trisect $\angle ADC$. What is the perimeter of $\triangle BDP$?

[asy] draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); draw((0,0)--(1.3,2)); draw((0,0)--(3.4,2)); dot((0,0)); dot((0,2)); dot((3.4,2)); dot((3.4,0)); dot((1.3,2)); label("$A$",(0,2),NW); label("$B$",(3.4,2),NE); label("$C$",(3.4,0),SE); label("$D$",(0,0),SW); label("$P$",(1.3,2),N); [/asy]

$\mathrm{(A)}\ 3+\frac{\sqrt{3}}{3} \qquad\mathrm{(B)}\ 2+\frac{4\sqrt{3}}{3} \qquad\mathrm{(C)}\ 2+2\sqrt{2} \qquad\mathrm{(D)}\ \frac{3+3\sqrt{5}}{2} \qquad\mathrm{(E)}\ 2+\frac{5\sqrt{3}}{3}$


[asy] draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle); draw((0,0)--(1.3,2)); draw((0,0)--(3.4,2)); dot((0,0)); dot((0,2)); dot((3.4,2)); dot((3.4,0)); dot((1.3,2)); label("$A$",(0,2),NW); label("$B$",(3.4,2),NE); label("$C$",(3.4,0),SE); label("$D$",(0,0),SW); label("$P$",(1.3,2),N); label("$1$",(0,1),W); label("$2$",(1.7,1),SE); label("$\frac{\sqrt{3}}{3}$",(0.65,2),N); label("$\frac{2\sqrt{3}}{3}$",(0.85,1),NW); label("$\frac{2\sqrt{3}}{3}$",(2.35,2),N); [/asy]

$AD=1$.

Since $\angle ADC$ is trisected, $\angle ADP= \angle PDB= \angle BDC=30^\circ$.

Thus, $PD=\frac{2\sqrt{3}}{3}$

$DB=2$

$BP=\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}$.

Adding, we get $2+\frac{4\sqrt{3}}{3}$

$\boxed{\text{B}}$