|
|
Line 1: |
Line 1: |
− | ==Problem==
| |
| | | |
− | In rectangle <math>ABCD</math>, <math>AD=1</math>, <math>P</math> is on <math>\overline{AB}</math>, and <math>\overline{DB}</math> and <math>\overline{DP}</math> trisect <math>\angle ADC</math>. What is the perimeter of <math>\triangle BDP</math>?
| |
− |
| |
− | <asy>
| |
− | draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle);
| |
− | draw((0,0)--(1.3,2));
| |
− | draw((0,0)--(3.4,2));
| |
− | dot((0,0));
| |
− | dot((0,2));
| |
− | dot((3.4,2));
| |
− | dot((3.4,0));
| |
− | dot((1.3,2));
| |
− | label("$A$",(0,2),NW);
| |
− | label("$B$",(3.4,2),NE);
| |
− | label("$C$",(3.4,0),SE);
| |
− | label("$D$",(0,0),SW);
| |
− | label("$P$",(1.3,2),N);
| |
− | </asy>
| |
− |
| |
− | <math>\mathrm{(A)}\ 3+\frac{\sqrt{3}}{3} \qquad\mathrm{(B)}\ 2+\frac{4\sqrt{3}}{3} \qquad\mathrm{(C)}\ 2+2\sqrt{2} \qquad\mathrm{(D)}\ \frac{3+3\sqrt{5}}{2} \qquad\mathrm{(E)}\ 2+\frac{5\sqrt{3}}{3}</math>
| |
− |
| |
− |
| |
− | <asy>
| |
− | draw((0,2)--(3.4,2)--(3.4,0)--(0,0)--cycle);
| |
− | draw((0,0)--(1.3,2));
| |
− | draw((0,0)--(3.4,2));
| |
− | dot((0,0));
| |
− | dot((0,2));
| |
− | dot((3.4,2));
| |
− | dot((3.4,0));
| |
− | dot((1.3,2));
| |
− | label("$A$",(0,2),NW);
| |
− | label("$B$",(3.4,2),NE);
| |
− | label("$C$",(3.4,0),SE);
| |
− | label("$D$",(0,0),SW);
| |
− | label("$P$",(1.3,2),N);
| |
− | label("$1$",(0,1),W);
| |
− | label("$2$",(1.7,1),SE);
| |
− | label("$\frac{\sqrt{3}}{3}$",(0.65,2),N);
| |
− | label("$\frac{2\sqrt{3}}{3}$",(0.85,1),NW);
| |
− | label("$\frac{2\sqrt{3}}{3}$",(2.35,2),N);
| |
− | </asy>
| |
− |
| |
− | <math>AD=1</math>.
| |
− |
| |
− | Since <math>\angle ADC</math> is trisected, <math>\angle ADP= \angle PDB= \angle BDC=30^\circ</math>.
| |
− |
| |
− | Thus, <math>PD=\frac{2\sqrt{3}}{3}</math>
| |
− |
| |
− | <math>DB=2</math>
| |
− |
| |
− | <math>BP=\sqrt{3}-\frac{\sqrt{3}}{3}=\frac{2\sqrt{3}}{3}</math>.
| |
− |
| |
− | Adding, we get <math>2+\frac{4\sqrt{3}}{3}</math>
| |
− |
| |
− | <math>\boxed{\text{B}}</math>
| |