Difference between revisions of "Shoelace Theorem"
(→Proof 2) |
|||
Line 16: | Line 16: | ||
and marks the pairs of coordinates to be multiplied, the resulting image looks like laced-up shoes. | and marks the pairs of coordinates to be multiplied, the resulting image looks like laced-up shoes. | ||
+ | ==Proof 1== | ||
+ | Typing... ~ ShreyJ | ||
==Proof 2== | ==Proof 2== | ||
Let <math>\Omega</math> be the set of points belonging to the polygon. | Let <math>\Omega</math> be the set of points belonging to the polygon. |
Revision as of 13:18, 6 July 2018
The Shoelace Theorem is a nifty formula for finding the area of a polygon given the coordinates of its vertices.
Theorem
Suppose the polygon has vertices , , ... , , listed in clockwise order. Then the area of is
The Shoelace Theorem gets its name because if one lists the coordinates in a column, and marks the pairs of coordinates to be multiplied, the resulting image looks like laced-up shoes.
Proof 1
Typing... ~ ShreyJ
Proof 2
Let be the set of points belonging to the polygon. We have that where . The volume form is an exact form since , where Using this substitution, we have Next, we use the theorem of Stokes to obtain We can write , where is the line segment from to . With this notation, we may write If we substitute for , we obtain If we parameterize, we get Performing the integration, we get More algebra yields the result
Problems
Introductory
In right triangle , we have , , and . Medians and are drawn to sides and , respectively. and intersect at point . Find the area of .
External Links
A good explanation and exploration into why the theorem works by James Tanton: [1] AOPS