Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 15"
m |
m |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | A <math>\displaystyle 4\times4\times4</math> cube is composed of <math>\displaystyle 64</math> unit cubes. The faces of <math>\displaystyle 16</math> unit cubes are colored red. An arrangement of the cubes is <math>\mathfrak{Intriguing}</math> if there is exactly <math>\displaystyle 1</math> red unit cube in every <math>\displaystyle 1\times1\times4</math> rectangular box composed of <math>\displaystyle 4</math> unit cubes. Determine the number of <math>\mathfrak{Intriguing}</math> colorings. | + | A <math>\displaystyle 4\times4\times4</math> [[cube (geometry) | cube]] is composed of <math>\displaystyle 64</math> unit cubes. The faces of <math>\displaystyle 16</math> unit cubes are colored red. An arrangement of the cubes is <math>\mathfrak{Intriguing}</math> if there is exactly <math>\displaystyle 1</math> red unit cube in every <math>\displaystyle 1\times1\times4</math> rectangular box composed of <math>\displaystyle 4</math> unit cubes. Determine the number of <math>\mathfrak{Intriguing}</math> colorings. |
[[Image:CubeArt.jpg]] | [[Image:CubeArt.jpg]] |
Revision as of 11:29, 30 October 2006
Problem
A cube is composed of unit cubes. The faces of unit cubes are colored red. An arrangement of the cubes is if there is exactly red unit cube in every rectangular box composed of unit cubes. Determine the number of colorings.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.