Difference between revisions of "Harmonic series"
(Proof of harmonic series converging) |
m (→How to solve) |
||
Line 17: | Line 17: | ||
It can be shown that the harmonic series converges by grouping the terms. We know that the first term, 1, added to the second term, <math>\frac{1}{2}</math> is greater than <math>\frac{1}{2}</math>. We also know that the third and and fourth terms, <math>\frac{1}{3}</math> and <math>\frac{1}{4}</math>, add up to something greater than <math>\frac{1}{2}</math>. And we continue grouping the terms between powers of two. So we have | It can be shown that the harmonic series converges by grouping the terms. We know that the first term, 1, added to the second term, <math>\frac{1}{2}</math> is greater than <math>\frac{1}{2}</math>. We also know that the third and and fourth terms, <math>\frac{1}{3}</math> and <math>\frac{1}{4}</math>, add up to something greater than <math>\frac{1}{2}</math>. And we continue grouping the terms between powers of two. So we have | ||
− | <math>\displaystyle\sum_{i=1}^{\infty}\frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=(1+\frac{1}{2})+(\frac{1}{3}+\frac{1}{4})+(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8})+\cdots \ge \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots | + | <math>\displaystyle\sum_{i=1}^{\infty}\frac{1}{i}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots=(1+\frac{1}{2})+(\frac{1}{3}+\frac{1}{4})+(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8})+\cdots \ge \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots \to \infty</math> |
− | |||
− |
Revision as of 09:20, 23 August 2006
There are several types of harmonic series.
The the most basic harmonic series is the infinite sum This sum slowly approaches infinity.
The alternating harmonic series, , though, approaches .
The general harmonic series, , has its value depending on the value of the constants and .
The zeta-function is a harmonic series when the input is one.
How to solve
Harmonic Series
It can be shown that the harmonic series converges by grouping the terms. We know that the first term, 1, added to the second term, is greater than . We also know that the third and and fourth terms, and , add up to something greater than . And we continue grouping the terms between powers of two. So we have