Difference between revisions of "2018 AMC 8 Problems/Problem 10"

(Created page with "==Problem 10== The [i]harmonic mean[/i] of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1, 2, and...")
 
(Problem 10)
Line 1: Line 1:
 
==Problem 10==
 
==Problem 10==
The [i]harmonic mean[/i] of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1, 2, and 4?
+
The harmonic mean of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1, 2, and 4?
  
 
<math>\textbf{(A) }\frac{3}{7}\qquad\textbf{(B) }\frac{7}{12}\qquad\textbf{(C) }\frac{12}{7}\qquad\textbf{(D) }\frac{7}{4}\qquad \textbf{(E) }\frac{7}{3}</math>
 
<math>\textbf{(A) }\frac{3}{7}\qquad\textbf{(B) }\frac{7}{12}\qquad\textbf{(C) }\frac{12}{7}\qquad\textbf{(D) }\frac{7}{4}\qquad \textbf{(E) }\frac{7}{3}</math>

Revision as of 09:49, 21 November 2018

Problem 10

The harmonic mean of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1, 2, and 4?

$\textbf{(A) }\frac{3}{7}\qquad\textbf{(B) }\frac{7}{12}\qquad\textbf{(C) }\frac{12}{7}\qquad\textbf{(D) }\frac{7}{4}\qquad \textbf{(E) }\frac{7}{3}$