Difference between revisions of "1998 JBMO Problems/Problem 2"
(Created page with "Let <math>BC = a, ED = 1 - a</math> Let angle <math>DAC</math> = <math>X</math> Applying cosine rule to triangle <math>DAC</math> we get: <math>Cos X = (AC ^ {2} + AD ^ {2}...") |
|||
Line 28: | Line 28: | ||
So <math>area</math> of triangle <math>ABC</math> + <math>area</math> of triangle <math>AED</math> = <math>area</math> of Triangle <math>ADC</math>. | So <math>area</math> of triangle <math>ABC</math> + <math>area</math> of triangle <math>AED</math> = <math>area</math> of Triangle <math>ADC</math>. | ||
Thus <math>area</math> of pentagon <math>ABCD</math> = <math>area</math> of <math>ABC</math> + <math>area</math> of <math>AED</math> + <math>area</math> of <math>DAC</math> = <math>1/2 + 1/2 = 1</math> | Thus <math>area</math> of pentagon <math>ABCD</math> = <math>area</math> of <math>ABC</math> + <math>area</math> of <math>AED</math> + <math>area</math> of <math>DAC</math> = <math>1/2 + 1/2 = 1</math> | ||
+ | |||
+ | By Kris17 |
Revision as of 00:19, 29 November 2018
Let
Let angle =
Applying cosine rule to triangle we get:
Substituting we get:
From above,
Thus,
So, of triangle =
Let be the altitude of triangle DAC from A.
So
This implies .
Since is a cyclic quadrilateral with , traingle is congruent to . Similarly is a cyclic quadrilateral and traingle is congruent to .
So of triangle + of triangle = of Triangle . Thus of pentagon = of + of + of =
By Kris17