Difference between revisions of "2005 Canadian MO Problems/Problem 2"
(→Solution) |
|||
Line 5: | Line 5: | ||
* Prove that there does not exist any integer <math>n</math> for which we can find a Pythagorean triple <math>(a,b,c)</math> satisfying <math>(c/a + c/b)^2 = n</math>. | * Prove that there does not exist any integer <math>n</math> for which we can find a Pythagorean triple <math>(a,b,c)</math> satisfying <math>(c/a + c/b)^2 = n</math>. | ||
==Solution== | ==Solution== | ||
− | |||
− | |||
− | |||
+ | We have <P><center><math>\left(\frac ca + \frac cb\right)^2 = \frac{c^2}{a^2} + 2\frac{c^2}{ab} + \frac{c^2}{b^2} = \frac{a^2 + b^2}{a^2} + 2\frac{a^2 + b^2}{ab} + \frac{a^2+b^2}{b^2} = 2 + \left(\frac{a^2}{b^2} + \frac{b^2}{a^2}\right) + 2\left(\frac ab + \frac ba\right)</math></center></P>. <div align=left>By [[AM-GM]], we have </div><P><center><math>x + \frac 1x > 2,</math></center></P><div align=left> where <math>x</math> is a [[positive]] [[real number]] not equal to one. If <math>a = b</math>, then <math>c \not\in \mathbb{Z}</math>. Thus <math>\displaystyle a \neq b</math> and <math>\frac ab \neq 1\implies \frac{a^2}{b^2}\neq 1</math>. Therefore, </div><P><center><math>\left(\frac ca + \frac cb\right)^2 > 2 + 2 + 2(2) = 8.</math></center></P> | ||
==See also== | ==See also== |
Revision as of 12:19, 16 September 2006
Problem
Let be a Pythagorean triple, i.e., a triplet of positive integers with .
- Prove that .
- Prove that there does not exist any integer for which we can find a Pythagorean triple satisfying .
Solution
We have
.
By AM-GM, we have
where is a positive real number not equal to one. If , then . Thus and . Therefore,