Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 3"
m |
|||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | If <math>n^2 + 12n - 2007 = m^2</math>, we can [[complete the square]] on the left-hand side to get <math>n^2 + 12n + 36 = m^2 + 2043</math> so <math>(n+6)^2 = m^2 + 2043</math>. Subtracting <math>m^2</math> and [[factoring]] the left-hand side, we get <math>(n + m + 6)(n - m + 6) = 2043</math>. <math>2043 = 3^2 \cdot 227</math>, which can be split into two [[factor]]s in 3 ways, <math>2043 \cdot 1 = 3 \cdot 681 = 227 \cdot 9</math>. This gives us three pairs of [[equation]]s to solve for <math>n</math>: | + | If <math>n^2 + 12n - 2007 = m^2</math>, we can [[completing the square | complete the square]] on the left-hand side to get <math>n^2 + 12n + 36 = m^2 + 2043</math> so <math>(n+6)^2 = m^2 + 2043</math>. Subtracting <math>m^2</math> and [[factoring]] the left-hand side, we get <math>(n + m + 6)(n - m + 6) = 2043</math>. <math>2043 = 3^2 \cdot 227</math>, which can be split into two [[factor]]s in 3 ways, <math>2043 \cdot 1 = 3 \cdot 681 = 227 \cdot 9</math>. This gives us three pairs of [[equation]]s to solve for <math>n</math>: |
<math>n + m + 6 = 2043</math> and <math>n - m + 6 = 1</math> give <math>2n + 12 = 2044</math> and <math>n = 1016</math>. | <math>n + m + 6 = 2043</math> and <math>n - m + 6 = 1</math> give <math>2n + 12 = 2044</math> and <math>n = 1016</math>. |
Revision as of 19:35, 15 September 2006
Problem
Let be the sum of all positive integers such that is a perfect square. Find the remainder when is divided by
Solution
If , we can complete the square on the left-hand side to get so . Subtracting and factoring the left-hand side, we get . , which can be split into two factors in 3 ways, . This gives us three pairs of equations to solve for :
and give and .
and give and .
and give and .
Finally, , so the answer is .