Difference between revisions of "2014 Canadian MO Problems/Problem 1"
Sirhcgninil (talk | contribs) |
Sirhcgninil (talk | contribs) |
||
Line 1: | Line 1: | ||
− | + | <math>\frac{a_1}{1+a_1}</math>+<math>\frac{a_2}{(1+a_1)(1+a_2)}+\cdots+\frac{a_n}{(1+a_1)(1+a_2)\cdots (1+a_n)}\=(1-\frac{1}{1+a_1})+(\frac{1}{1+a_1}-\frac{1}{(1+a_1)(1+a_2)})+\cdots+(\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n-1})}-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)})\=1-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)}\\geq 1-\frac{1}{(2\sqrt{1\cdot a_1)}(2\sqrt{1\cdot a_2)}\cdots (2\sqrt{1\cdot a_n)}}\=1-\frac{1}{2^n}\=\frac{2^n-1}{2^n}</math> | |
− | |||
− | \frac{a_1}{1+a_1}+\frac{a_2}{(1+a_1)(1+a_2)}+\cdots+\frac{a_n}{(1+a_1)(1+a_2)\cdots (1+a_n)}\=(1-\frac{1}{1+a_1})+(\frac{1}{1+a_1}-\frac{1}{(1+a_1)(1+a_2)})+\cdots+(\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_{n-1})}-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)})\=1-\frac{1}{(1+a_1)(1+a_2)\cdots (1+a_n)}\\geq 1-\frac{1}{(2\sqrt{1\cdot a_1)}(2\sqrt{1\cdot a_2)}\cdots (2\sqrt{1\cdot a_n)}}\=1-\frac{1}{2^n}\=\frac{2^n-1}{2^n} | ||
− |
Revision as of 07:43, 27 March 2019
+