Difference between revisions of "Proof that 2=1"

(Created page with "1) <math>a = b</math>. Given. 2) <math>a^2 = ab</math>. Multiply both sides by a. 3) <math>a^2-b^2 = ab-b^2. Subtract </math>b^2<math> from both sides. 4) </math>(a+b)(a-b) =...")
 
Line 1: Line 1:
 
1) <math>a = b</math>. Given.
 
1) <math>a = b</math>. Given.
 
2) <math>a^2 = ab</math>. Multiply both sides by a.
 
2) <math>a^2 = ab</math>. Multiply both sides by a.
3) <math>a^2-b^2 = ab-b^2.  Subtract </math>b^2<math> from both sides.
+
3) <math>a^2-b^2 = ab-b^2</math>.  Subtract <math>b^2</math> from both sides.
4) </math>(a+b)(a-b) = b(a-b)<math>.  Factor both sides.
+
4) <math>(a+b)(a-b) = b(a-b)</math>.  Factor both sides.
5) </math>(a+b) = b<math>. Divide both sides by </math>(a-b)<math>
+
5) <math>(a+b) = b</math>. Divide both sides by <math>(a-b)</math>
6) </math>a+a = a<math>.  Substitute </math>a<math> for </math>b<math>.
+
6) <math>a+a = a</math>.  Substitute <math>a</math> for <math>b</math>.
7) </math>2a = a<math>.  Addition.
+
7) <math>2a = a</math>.  Addition.
8) </math>2 = 1<math>.  Divide both sides by </math>a$.
+
8) <math>2 = 1</math>.  Divide both sides by <math>a</math>.

Revision as of 18:29, 27 June 2019

1) $a = b$. Given. 2) $a^2 = ab$. Multiply both sides by a. 3) $a^2-b^2 = ab-b^2$. Subtract $b^2$ from both sides. 4) $(a+b)(a-b) = b(a-b)$. Factor both sides. 5) $(a+b) = b$. Divide both sides by $(a-b)$ 6) $a+a = a$. Substitute $a$ for $b$. 7) $2a = a$. Addition. 8) $2 = 1$. Divide both sides by $a$.