Difference between revisions of "2003 AMC 10A Problems/Problem 8"

(added problem and solution)
(See Also: fixed link)
Line 19: Line 19:
 
== See Also ==
 
== See Also ==
 
*[[2003 AMC 10A Problems]]
 
*[[2003 AMC 10A Problems]]
*[[2003 AMC 10A Problems/Problem 9|Previous Problem]]
+
*[[2003 AMC 10A Problems/Problem 7|Previous Problem]]
*[[2003 AMC 10A Problems/Problem 11|Next Problem]]
+
*[[2003 AMC 10A Problems/Problem 9|Next Problem]]
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 19:04, 4 November 2006

Problem

The polygon enclosed by the solid lines in the figure consists of 4 congruent squares joined edge-to-edge. One more congruent square is attached to an edge at one of the nine positions indicated. How many of the nine resulting polygons can be folded to form a cube with one face missing?

$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } 6$

Solution

Let the squares be labeled $A$, $B$, $C$, and $D$.

When the polygon is folded, the "right" edge of square $A$ becomes adjacent to the "bottom edge" of square $C$, and the "bottom" edge of square $A$ becomes adjacent to the "bottom" edge of square $D$.

So, any "new" square that is attached to those edges will prevent the polygon from becoming a cube with one face missing.

Therefore, squares $1$, $2$, and $3$ will prevent the polygon from becoming a cube with one face missing.

Squares $4$, $5$, $6$, $7$, $8$, and $9$ will allow the polygon to become a cube with one face missing when folded.

Thus the answer is $6 \Rightarrow E$.

See Also