Difference between revisions of "1971 AHSME Problems/Problem 32"

(Solution)
(Solution)
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
  
First, we write the expression as <math>(1+\frac{1}{\sqrt[32]{2}})(1+\frac{1}{\sqrt[16]{2}})(1+\frac{1}{\sqrt[8]{2}})(1+\frac{1}{\sqrt[4]{2}})(1+\frac{1}{\sqrt[2]{2}})</math>
+
First, we write the expression as <math>(1+\frac{1}{\sqrt[32]{2}})(1+\frac{1}{\sqrt[16]{2}})(1+\frac{1}{\sqrt[8]{2}})(1+\frac{1}{\sqrt[4]{2}})(1+\frac{1}{\sqrt[2]{2}})</math>, or <math>(1+\frac{1}{\sqrt[32]{2}})(1+\frac{1}{\sqrt[32]{4}})(1+\frac{1}{\sqrt[32]{8}})(1+\frac{1}{\sqrt[32]{16}})(1+\frac{1}{\sqrt[32]{32}})</math>

Revision as of 21:53, 16 August 2019

Problem 32

If $s=(1+2^{-\frac{1}{32}})(1+2^{-\frac{1}{16}})(1+2^{-\frac{1}{8}})(1+2^{-\frac{1}{4}})(1+2^{-\frac{1}{2}})$, then $s$ is equal to

$\textbf{(A) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(B) }(1-2^{-\frac{1}{32}})^{-1}\qquad \textbf{(C) }1-2^{-\frac{1}{32}}\qquad \\ \textbf{(D) }\textstyle{\frac{1}{2}}(1-2^{-\frac{1}{32}})\qquad  \textbf{(E) }\frac{1}{2}$

Solution

First, we write the expression as $(1+\frac{1}{\sqrt[32]{2}})(1+\frac{1}{\sqrt[16]{2}})(1+\frac{1}{\sqrt[8]{2}})(1+\frac{1}{\sqrt[4]{2}})(1+\frac{1}{\sqrt[2]{2}})$, or $(1+\frac{1}{\sqrt[32]{2}})(1+\frac{1}{\sqrt[32]{4}})(1+\frac{1}{\sqrt[32]{8}})(1+\frac{1}{\sqrt[32]{16}})(1+\frac{1}{\sqrt[32]{32}})$