Difference between revisions of "2019 Mock AMC 10B Problems/Problem 19"

Line 15: Line 15:
  
 
Therefore, the smallest powers of <math>2</math> that divide each of these numbers are <math>2, 2, 2, 2, 2</math>, and <math>4</math>, respectively. The smallest power of <math>2</math> that divides <math>3^{2016} - 1</math> is thus <math>2^5 \cdot 4 = \boxed{\text{(E)} 256}</math>.
 
Therefore, the smallest powers of <math>2</math> that divide each of these numbers are <math>2, 2, 2, 2, 2</math>, and <math>4</math>, respectively. The smallest power of <math>2</math> that divides <math>3^{2016} - 1</math> is thus <math>2^5 \cdot 4 = \boxed{\text{(E)} 256}</math>.
 +
 +
<baker77>

Revision as of 20:51, 2 November 2019

Problem

What is the largest power of $2$ that divides $3^{2016}-1$?

$\textbf{(A)}\ 16 \qquad\textbf{(B)}\ 32 \qquad\textbf{(C)}\ 64 \qquad\textbf{(D)}\ 128 \qquad\textbf{(E)}\ 256$

Solution

$3^{2016} - 1 = (3^{1008} - 1)(3^{1008} + 1) = (3^{504} - 1)(3^{504} + 1)(3^{1008} + 1) = (3^{252} - 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1)$ $= (3^{126} - 1)(3^{126} + 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1) = (3^{63} - 1)(3^{63} + 1)(3^{126} + 1)(3^{252} + 1)(3^{504} + 1)(3^{1008} + 1)$.

By simple mod checking, we find that

$3^{1008} + 1 \equiv 3^{504} + 1 \equiv 3^{252} + 1 \equiv 3^{126} + 1 \equiv 3^{63} - 1 \equiv 2$ $\text{mod}$ $4$, and $3^{63} + 1 \equiv 4$ $\text{mod}$ $8$.

Therefore, the smallest powers of $2$ that divide each of these numbers are $2, 2, 2, 2, 2$, and $4$, respectively. The smallest power of $2$ that divides $3^{2016} - 1$ is thus $2^5 \cdot 4 = \boxed{\text{(E)} 256}$.

<baker77>