Difference between revisions of "1953 AHSME Problems/Problem 35"
(Created page with "If <math>f(x)=\frac{x(x-1)}{2}</math>, then <math>f(x+2)</math> equals: <math>\textbf{(A)}\ f(x)+f(2) \qquad \textbf{(B)}\ (x+2)f(x) \qquad \textbf{(C)}\ x(x+2)f(x) \qquad \...") |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
If <math>f(x)=\frac{x(x-1)}{2}</math>, then <math>f(x+2)</math> equals: | If <math>f(x)=\frac{x(x-1)}{2}</math>, then <math>f(x+2)</math> equals: | ||
Line 5: | Line 6: | ||
\textbf{(C)}\ x(x+2)f(x) \qquad | \textbf{(C)}\ x(x+2)f(x) \qquad | ||
\textbf{(D)}\ \frac{xf(x)}{x+2}\\ \textbf{(E)}\ \frac{(x+2)f(x+1)}{x} </math> | \textbf{(D)}\ \frac{xf(x)}{x+2}\\ \textbf{(E)}\ \frac{(x+2)f(x+1)}{x} </math> | ||
+ | |||
+ | ==Solution== |
Revision as of 20:19, 24 January 2020
Problem
If , then equals: