Difference between revisions of "2020 AMC 12A Problems/Problem 6"
(→Problem 6) |
|||
Line 28: | Line 28: | ||
<math>\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8</math> | <math>\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8</math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | The two lines of symmetry must be horizontally and vertically through the middle. We can then fill the boxes in like so: | ||
+ | |||
+ | <asy> | ||
+ | import olympiad; | ||
+ | unitsize(25); | ||
+ | filldraw((1,3)--(1,4)--(2,4)--(2,3)--cycle, gray(0.7)); | ||
+ | filldraw((0,3)--(0,4)--(1,4)--(1,3)--cycle, gray(0.9)); | ||
+ | filldraw((3,3)--(3,4)--(4,4)--(4,3)--cycle, gray(0.9)); | ||
+ | filldraw((4,3)--(4,4)--(5,4)--(5,3)--cycle, gray(0.9)); | ||
+ | filldraw((2,2)--(2,3)--(3,3)--(3,2)--cycle, gray(0.9)); | ||
+ | filldraw((2,1)--(2,2)--(3,2)--(3,1)--cycle, gray(0.7)); | ||
+ | filldraw((3,0)--(4,0)--(4,1)--(3,1)--cycle, gray(0.9)); | ||
+ | filldraw((1,0)--(2,0)--(2,1)--(1,1)--cycle, gray(0.9)); | ||
+ | filldraw((4,0)--(5,0)--(5,1)--(4,1)--cycle, gray(0.7)); | ||
+ | filldraw((0,0)--(1,0)--(1,1)--(0,1)--cycle, gray(0.9)); | ||
+ | for (int i = 0; i < 5; ++i) { | ||
+ | for (int j = 0; j < 6; ++j) { | ||
+ | pair A = (j,i); | ||
+ | |||
+ | } | ||
+ | } | ||
+ | for (int i = 0; i < 5; ++i) { | ||
+ | for (int j = 0; j < 6; ++j) { | ||
+ | if (j != 5) { | ||
+ | draw((j,i)--(j+1,i)); | ||
+ | } | ||
+ | if (i != 4) { | ||
+ | draw((j,i)--(j,i+1)); | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | </asy> | ||
+ | |||
+ | where the light gray boxes are the ones we have filled. Counting these, we get <math>\boxed{\textbf{(D) } 7}</math> total boxes. ~ciceronii |
Revision as of 14:58, 1 February 2020
Problem 6
In the plane figure shown below, of the unit squares have been shaded. What is the least number of additional unit squares that must be shaded so that the resulting figure has two lines of symmetry?
Solution
The two lines of symmetry must be horizontally and vertically through the middle. We can then fill the boxes in like so:
where the light gray boxes are the ones we have filled. Counting these, we get total boxes. ~ciceronii