Difference between revisions of "2020 AMC 12B Problems/Problem 10"
Argonauts16 (talk | contribs) (Created page with "==Problem 10== In unit square <math>ABCD,</math> the inscribed circle <math>\omega</math> intersects <math>\overline{CD}</math> at <math>M,</math> and <math>\overline{AM}</ma...") |
Argonauts16 (talk | contribs) (→Solution) |
||
Line 5: | Line 5: | ||
<math>\textbf{(A) } \frac{\sqrt5}{12} \qquad \textbf{(B) } \frac{\sqrt5}{10} \qquad \textbf{(C) } \frac{\sqrt5}{9} \qquad \textbf{(D) } \frac{\sqrt5}{8} \qquad \textbf{(E) } \frac{2\sqrt5}{15}</math> | <math>\textbf{(A) } \frac{\sqrt5}{12} \qquad \textbf{(B) } \frac{\sqrt5}{10} \qquad \textbf{(C) } \frac{\sqrt5}{9} \qquad \textbf{(D) } \frac{\sqrt5}{8} \qquad \textbf{(E) } \frac{2\sqrt5}{15}</math> | ||
− | ==Solution== | + | ==Solution 1(Coordinate Bash)== |
Place circle <math>\omega</math> in the Cartesian plane such that the center lies on the origin. Then we can easily find the equation for <math>\omega</math> as <math>x^2+y^2=\frac{1}{4}</math>, because it is not translated and the radius is <math>\frac{1}{2}</math>. | Place circle <math>\omega</math> in the Cartesian plane such that the center lies on the origin. Then we can easily find the equation for <math>\omega</math> as <math>x^2+y^2=\frac{1}{4}</math>, because it is not translated and the radius is <math>\frac{1}{2}</math>. | ||
Line 11: | Line 11: | ||
We have <math>A=\left(-\frac{1}{2}, \frac{1}{2}\right)</math> and <math>M=\left(0, -\frac{1}{2}\right)</math>. The slope of the line passing through these two points is <math>\frac{\frac{1}{2}+\frac{1}{2}}{-\frac{1}{2}-0}=\frac{1}{-\frac{1}{2}}=-2</math>, and the <math>y</math>-intercept is simply <math>M</math>. This gives us the line passing through both points as <math>y=-2x-\frac{1}{2}</math>. | We have <math>A=\left(-\frac{1}{2}, \frac{1}{2}\right)</math> and <math>M=\left(0, -\frac{1}{2}\right)</math>. The slope of the line passing through these two points is <math>\frac{\frac{1}{2}+\frac{1}{2}}{-\frac{1}{2}-0}=\frac{1}{-\frac{1}{2}}=-2</math>, and the <math>y</math>-intercept is simply <math>M</math>. This gives us the line passing through both points as <math>y=-2x-\frac{1}{2}</math>. | ||
− | We substitute this into the equation for the circle to get <math>x^2+\left(-2x-\frac{1}{2}\right)^2=\frac{1}{4}</math>, or <math>x^2+4x^2+2x+\frac{1}{4}=\frac{1}{4}</math>. Simplifying gives <math>x(5x+2)=0</math>. The roots of this quadratic are <math>x=0</math> and <math>x=-\frac{2}{5}</math>, but if <math>x=0</math> we get point <math>M</math>, so we only want <math>x=-\frac{2}{5}. | + | We substitute this into the equation for the circle to get <math>x^2+\left(-2x-\frac{1}{2}\right)^2=\frac{1}{4}</math>, or <math>x^2+4x^2+2x+\frac{1}{4}=\frac{1}{4}</math>. Simplifying gives <math>x(5x+2)=0</math>. The roots of this quadratic are <math>x=0</math> and <math>x=-\frac{2}{5}</math>, but if <math>x=0</math> we get point <math>M</math>, so we only want <math>x=-\frac{2}{5}</math>. |
− | We plug this back into the linear equation to find < | + | We plug this back into the linear equation to find <math>y=\frac{3}{10}</math>, and so <math>P=\left(-\frac{2}{5}, \frac{3}{10}\right)</math>. Finally, we use distance formula on <math>A</math> and <math>P</math> to get <math>AP=\sqrt{\left(-\frac{5}{10}+\frac{4}{10}\right)^2+\left(\frac{5}{10}-\frac{3}{10}\right)^2}=\sqrt{\frac{1}{100}+\frac{4}{100}}=\boxed{\mathbf{(B) } \frac{\sqrt{5}}{10}}</math>. |
Revision as of 20:26, 7 February 2020
Problem 10
In unit square the inscribed circle intersects at and intersects at a point different from What is
Solution 1(Coordinate Bash)
Place circle in the Cartesian plane such that the center lies on the origin. Then we can easily find the equation for as , because it is not translated and the radius is .
We have and . The slope of the line passing through these two points is , and the -intercept is simply . This gives us the line passing through both points as .
We substitute this into the equation for the circle to get , or . Simplifying gives . The roots of this quadratic are and , but if we get point , so we only want .
We plug this back into the linear equation to find , and so . Finally, we use distance formula on and to get .