Difference between revisions of "2020 AMC 12B Problems/Problem 25"
(→Problem 25) |
(→Problem 25) |
||
Line 7: | Line 7: | ||
<math>\textbf{(A)}\ \frac{7}{12} \qquad\textbf{(B)}\ 2 - \sqrt{2} \qquad\textbf{(C)}\ \frac{1+\sqrt{2}}{4} \qquad\textbf{(D)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(E)}\ \frac{5}{8}</math> | <math>\textbf{(A)}\ \frac{7}{12} \qquad\textbf{(B)}\ 2 - \sqrt{2} \qquad\textbf{(C)}\ \frac{1+\sqrt{2}}{4} \qquad\textbf{(D)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(E)}\ \frac{5}{8}</math> | ||
+ | |||
+ | ==Solution== |
Revision as of 23:30, 7 February 2020
Problem 25
For each real number with , let numbers and be chosen independently at random from the intervals and , respectively, and let be the probability that
What is the maximum value of