Difference between revisions of "2005 Alabama ARML TST Problems/Problem 4"

(awupued)
 
m (spacingfixed)
Line 4: Line 4:
  
 
We wish for <math>2000+100A+10B+8 \equiv 0 \pmod 12\rightarrow 4A+10B\equiv 8 \pmod 12\rightarrow 2A+5B\equiv 4 \pmod 6</math>. Thus <math>B\equiv 0 \pmod 2</math>. Let <math>B=2C\rightarrow A+2C\equiv 2 \pmod 3</math>; <math>C<5</math>,<math>A<10</math>, one of the eqns. must be true:
 
We wish for <math>2000+100A+10B+8 \equiv 0 \pmod 12\rightarrow 4A+10B\equiv 8 \pmod 12\rightarrow 2A+5B\equiv 4 \pmod 6</math>. Thus <math>B\equiv 0 \pmod 2</math>. Let <math>B=2C\rightarrow A+2C\equiv 2 \pmod 3</math>; <math>C<5</math>,<math>A<10</math>, one of the eqns. must be true:
 +
 
<math>A+2C=2\rightarrow</math> 2 ways
 
<math>A+2C=2\rightarrow</math> 2 ways
 +
 
<math>A+2C=5\rightarrow</math> 3
 
<math>A+2C=5\rightarrow</math> 3
 +
 
<math>A+2C=2\rightarrow</math> 4
 
<math>A+2C=2\rightarrow</math> 4
 +
 
<math>A+2C=2\rightarrow</math> 4
 
<math>A+2C=2\rightarrow</math> 4
 +
 
<math>A+2C=2\rightarrow</math> 3
 
<math>A+2C=2\rightarrow</math> 3
 +
 
<math>A+2C=2\rightarrow</math> 2 ways
 
<math>A+2C=2\rightarrow</math> 2 ways
 +
 
Total of 18 ways.
 
Total of 18 ways.
 
==See also==
 
==See also==

Revision as of 13:45, 17 November 2006

Problem

For how many ordered pairs of digits $\displaystyle (A,B)$ is $\displaystyle 2AB8$ a multiple of 12?

Solution

We wish for $2000+100A+10B+8 \equiv 0 \pmod 12\rightarrow 4A+10B\equiv 8 \pmod 12\rightarrow 2A+5B\equiv 4 \pmod 6$. Thus $B\equiv 0 \pmod 2$. Let $B=2C\rightarrow A+2C\equiv 2 \pmod 3$; $C<5$,$A<10$, one of the eqns. must be true:

$A+2C=2\rightarrow$ 2 ways

$A+2C=5\rightarrow$ 3

$A+2C=2\rightarrow$ 4

$A+2C=2\rightarrow$ 4

$A+2C=2\rightarrow$ 3

$A+2C=2\rightarrow$ 2 ways

Total of 18 ways.

See also