Difference between revisions of "2006 IMO Problems"
(→Problem 1) |
(→Problem 6) |
||
Line 13: | Line 13: | ||
==Problem 6== | ==Problem 6== | ||
+ | Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P. | ||
==See Also== | ==See Also== |
Revision as of 00:24, 18 March 2020
Problem 1
Let be a triangle with incentre A point in the interior of the triangle satisfies . Show that and that equality holds if and only if
Problem 2
Let be a regular 2006-gon. A diagonal of is called good if its endpoints divide the boundary of into two parts, each composed of an odd number of sides of . The sides of are also called good. Suppose has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of . Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration.
Problem 3
Problem 4
Problem 5
Problem 6
Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P. Show that the sum of the areas assigned to the sides of P is at least twice the area of P.