Difference between revisions of "1976 AHSME Problems/Problem 27"

(Solution)
(Solution)
Line 15: Line 15:
 
Starting with the fraction on the left, begin by squaring the numerator and putting a square root around it. It becomes  
 
Starting with the fraction on the left, begin by squaring the numerator and putting a square root around it. It becomes  
  
<math>\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2(
+
$\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2(
\sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}}</math>
+
\sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} =
 +
 
 +
\frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}}

Revision as of 17:06, 20 March 2020

Problem 27

If $N=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}$, then $N$ equals

$\textbf{(A) }1\qquad \textbf{(B) }2\sqrt{2}-1\qquad \textbf{(C) }\frac{\sqrt{5}}{2}\qquad \textbf{(D) }\sqrt{\frac{5}{2}}\qquad \textbf{(E) }\text{none of these}$

Solution

We will split this problem into two parts: The fraction on the left and the square root on the right.

Starting with the fraction on the left, begin by squaring the numerator and putting a square root around it. It becomes

$\frac{\sqrt{(\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2})^2}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{(\sqrt{5}+2)+(\sqrt{5}-2)+2( \sqrt{(\sqrt{5}+2)(\sqrt{5}-2)}}}{\sqrt{\sqrt{5}+1}} = \frac{\sqrt{2\sqrt5+2\sqrt{(\sqrt5)^2-2^2}}}{\sqrt{\sqrt{5}+1}} =

\frac{\sqrt{2\sqrt5+2\sqrt{1}}}{\sqrt{\sqrt5+1}}