Difference between revisions of "The Apple Method"

(Examples)
(Examples)
Line 6: Line 6:
 
<math>\emph{Solution:}</math>
 
<math>\emph{Solution:}</math>
  
If we set <math>(^{^(})=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that <math>(^{^(})^2= 6+(^{^(})</math>.
+
If we set <math>\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}</math>, we can see that <math>(^{^(})^2= 6+(^{^(})</math>.
  
 
Solving, we get <math>(^{^(})=\boxed{3}</math>
 
Solving, we get <math>(^{^(})=\boxed{3}</math>

Revision as of 15:22, 21 March 2020

The Apple Method is a method for solving algebra problems. An apple is used to make a clever algebraic substitution.

Examples

1. Evaluate: \[\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}\]

$\emph{Solution:}$

If we set $\textcolor{red}{(\textcolor{green}{^{^(}})}=\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$, we can see that $(^{^(})^2= 6+(^{^(})$.

Solving, we get $(^{^(})=\boxed{3}$