Difference between revisions of "1971 AHSME Problems/Problem 7"

Line 1: Line 1:
Let\ x\ equal\ 2^{-2k}
+
<math>Let\ x\ equal\ 2^{-2k}
 
\
 
\
 
From\ this\ we\ get \frac{x}{2}-(\frac{-x}{\frac{-1}{2}})+x\ by\ using\ power\ rule\  
 
From\ this\ we\ get \frac{x}{2}-(\frac{-x}{\frac{-1}{2}})+x\ by\ using\ power\ rule\  
 
Now\ we\ can\ see\ this\ simplies\ to\ \frac{-x}{2}\
 
Now\ we\ can\ see\ this\ simplies\ to\ \frac{-x}{2}\
 
Looking\ at\ \frac{x}{2} we\ can\ clearly\ see\ that\ \frac{-x}{2} is\ equal\ to\ -2^{-(2k+1)}\
 
Looking\ at\ \frac{x}{2} we\ can\ clearly\ see\ that\ \frac{-x}{2} is\ equal\ to\ -2^{-(2k+1)}\
Thus\ our\ answer\ is\ c
+
Thus\ our\ answer\ is\ c</math>

Revision as of 19:30, 29 April 2020

$Let\ x\ equal\ 2^{-2k} \ From\ this\ we\ get \frac{x}{2}-(\frac{-x}{\frac{-1}{2}})+x\ by\ using\ power\ rule\  Now\ we\ can\ see\ this\ simplies\ to\ \frac{-x}{2}\ Looking\ at\ \frac{x}{2} we\ can\ clearly\ see\ that\ \frac{-x}{2} is\ equal\ to\ -2^{-(2k+1)}\ Thus\ our\ answer\ is\ c$