Difference between revisions of "1983 AIME Problems/Problem 1"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math>x</math>,<math>y</math>, and <math>z</math> all exceed <math>1</math>, and let <math>w</math> be a positive number such that <math>\log_xw=24</math>, <math>\displaystyle \log_y w = 40</math>, and <math>\log_{xyz}w=12</math>. Find <math>\log_zw</math>.
+
Let <math>x</math>,<math>y</math>, and <math>z</math> all exceed <math>1</math>, and let <math>w</math> be a [[positive number]] such that <math>\log_xw=24</math>, <math>\displaystyle \log_y w = 40</math>, and <math>\log_{xyz}w=12</math>. Find <math>\log_zw</math>.
  
 
== Solution ==
 
== Solution ==
The logarithmic notation doesn't tell us much, so we'll first convert everything to exponents.  
+
The [[logarithm]]ic notation doesn't tell us much, so we'll first convert everything to the equivalent [[exponential]] [[expression]]s.  
  
 
<math>x^{24}=w</math>, <math>y^{40}=w</math>, and <math>(xyz)^{12}=w</math>. If we now convert everything to a power of <math>120</math>, it will be easy to isolate <math>z</math> and <math>w</math>.
 
<math>x^{24}=w</math>, <math>y^{40}=w</math>, and <math>(xyz)^{12}=w</math>. If we now convert everything to a power of <math>120</math>, it will be easy to isolate <math>z</math> and <math>w</math>.

Revision as of 11:17, 22 January 2007

Problem

Let $x$,$y$, and $z$ all exceed $1$, and let $w$ be a positive number such that $\log_xw=24$, $\displaystyle \log_y w = 40$, and $\log_{xyz}w=12$. Find $\log_zw$.

Solution

The logarithmic notation doesn't tell us much, so we'll first convert everything to the equivalent exponential expressions.

$x^{24}=w$, $y^{40}=w$, and $(xyz)^{12}=w$. If we now convert everything to a power of $120$, it will be easy to isolate $z$ and $w$.

$x^{120}=w^5$, $y^{120}=w^3$, and $(xyz)^{120}=w^{10}$.

With some substitution, we get $w^5w^3z^{120}=w^{10}$ and $\log_zw=60$.