(Tags: Removed redirect, Undo) |
|
Line 11: |
Line 11: |
| <math>\textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!</math> | | <math>\textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!</math> |
| | | |
− | == Solution 1 == | + | == Solution == |
− | There must be some polynomial <math>Q(x)</math> such that <math>P(x)-a=(x-1)(x-3)(x-5)(x-7)Q(x)</math>
| + | We observe that because <math>P(1) = P(3) = P(5) = P(7) = a</math>, if we define a new polynomial <math>R(x)</math> such that <math>R(x) = P(x) - a</math>, <math>R(x)</math> has roots when <math>P(x) = a</math>; namely, when <math>x=1,3,5,7</math>. |
| + | |
| + | Thus since <math>R(x)</math> has roots when <math>x=1,3,5,7</math>, we can factor the product <math>(x-1)(x-3)(x-5)(x-7)</math> out of <math>R(x)</math> to obtain a new polynomial <math>Q(x)</math> such that <math>(x-1)(x-3)(x-5)(x-7)(Q(x)) = R(x) = P(x) - a</math>. |
| | | |
| Then, plugging in values of <math>2,4,6,8,</math> we get | | Then, plugging in values of <math>2,4,6,8,</math> we get |
Line 20: |
Line 22: |
| <cmath>P(6)-a=(6-1)(6-3)(6-5)(6-7)Q(6) = -15Q(6) = -2a</cmath> | | <cmath>P(6)-a=(6-1)(6-3)(6-5)(6-7)Q(6) = -15Q(6) = -2a</cmath> |
| <cmath>P(8)-a=(8-1)(8-3)(8-5)(8-7)Q(8) = 105Q(8) = -2a</cmath> | | <cmath>P(8)-a=(8-1)(8-3)(8-5)(8-7)Q(8) = 105Q(8) = -2a</cmath> |
− | <cmath>-2a=-15Q(2)=9Q(4)=-15Q(6)=105Q(8).</cmath>
| |
− | Thus, <math>a</math> must be a multiple of <math>\text{lcm}(15,9,15,105)=315</math>.
| |
− |
| |
− | Now we show that there exists <math>Q(x)</math> such that <math>a=315.</math> We have
| |
− | <cmath>Q(2)=42, Q(4)=-70, Q(6)=42, Q(8)=-6</cmath>
| |
− | Thus, <math>Q(x)=R(x)(x-2)(x-6)+42</math> for some <math>R(x).</math> From here it is clear that <math>Q(x)</math> exists, since we can take <math>R(x)=-8x+60.</math>
| |
− |
| |
− | Therefore, our answer is <math> \boxed{\textbf{(B)}\ 315.} </math>
| |
− |
| |
− | == Solution 2 (Calculus)==
| |
− | The evenly-spaced data suggests using [[discrete derivative|discrete derivatives]] to tackle this problem. First, note that any polynomial of degree <math>n</math>
| |
− |
| |
− | <center><math>P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n</math></center>
| |
− |
| |
− | can also be written as
| |
− |
| |
− | <center><math>P(x) = b_0 + b_1 (x-1) + b_2 (x-1)(x-2) + \ldots + b_n (x-1)(x-2) \cdots (x-n)</math>.</center>
| |
− |
| |
− | Moreover, the coefficients <math>a_i</math> are integers for <math>i=0, 1, 2, \ldots n</math> iff the coefficients <math>b_i</math> are integers for <math>i=0, 1, 2, \ldots n</math>. This latter form is convenient for calculating discrete derivatives of <math>P(x)</math>.
| |
− |
| |
− | The discrete derivative of a function <math>f(x)</math> is the related function <math>\Delta f(x)</math> defined as
| |
− |
| |
− | <center><math>\Delta f(x) = f(x+1) - f(x)</math>.</center>
| |
− |
| |
− | With this definition, it's easy to see that for any positive integer <math>k</math> we have
| |
− |
| |
− | <center><math>\Delta [(x-1)(x-2)\cdots(x-k)] = k(x-1)(x-2)\cdots(x-[k-1])</math>.</center>
| |
− |
| |
− | This in turn allows us to use successive discrete derivatives evaluated at <math>x=1</math> to calculate all of the coefficients <math>b_i</math> using
| |
− |
| |
− | <center><math>P(1)=b_0</math>, <math>\Delta P(1) = b_1</math>, <math>\Delta^2 P(1) = 2 b_2</math>, <math>\ldots</math>, <math>\Delta^7 P(1) = 7! b_7</math>.</center>
| |
− |
| |
− | We can also calculate the following table of discrete derivatives based on the data points given in the problem statement:
| |
− |
| |
− | <center>
| |
− | <table frame='box' rules='all' cellpadding='3'>
| |
− | <tr><th /><th colspan='8'><math>x</math></th></tr>
| |
− |
| |
− | <tr><td align='right'></td><td align='center'><math>1</math></td><td align='center'><math>2</math></td><td align='center'><math>3</math></td><td align='center'><math>4</math></td><td align='center'><math>5</math></td><td align='center'><math>6</math></td><td align='center'><math>7</math></td><td align='center'><math>8</math></td></tr>
| |
− |
| |
− | <tr><td align='right'><math>P(x)</math></td><td align='right'><math>a</math></td><td align='right'><math>-a</math></td><td align='right'><math>a</math></td><td align='right'><math>-a</math></td><td align='right'><math>a</math></td><td align='right'><math>-a</math></td><td align='right'><math>a</math></td><td align='right'><math>-a</math></td></tr>
| |
− |
| |
− | <tr><td align='right'><math>\Delta P(x)</math></td><td align='right'><math>-2a</math></td><td align='right'><math>2a</math></td><td align='right'><math>-2a</math></td><td align='right'><math>2a</math></td><td align='right'><math>-2a</math></td><td align='right'><math>2a</math></td><td align='right'><math>-2a</math></td><td /></tr>
| |
− |
| |
− | <tr><td align='right'><math>\Delta^2 P(x)</math></td><td align='right'><math>4a</math></td><td align='right'><math>-4a</math></td><td align='right'><math>4a</math></td><td align='right'><math>-4a</math></td><td align='right'><math>4a</math></td><td align='right'><math>-4a</math></td><td /><td /></tr>
| |
− |
| |
− | <tr><td colspan='9' align='center'><math>\vdots</math></td></tr>
| |
− |
| |
− | <tr><td align='right'><math>\Delta^7 P(x)</math></td><td align='right'><math>-2^7 a</math></td><td /><td /><td /><td /><td /><td /><td /></tr>
| |
− | </table>
| |
− | </center>
| |
− |
| |
− | Thus we can read down the column for <math>x=1</math> to find that <math>k! b_k = (-2)^k a</math> for <math>k = 0, 1, \ldots, 7</math>. Interestingly, even if we choose <math>P(x)</math> to have degree greater than <math>7</math>, the <math>8</math> coefficients of lowest order always satisfy these conditions. Moreover, it's straightforward to show that the <math>P(x)</math> of degree <math>7</math> with <math>b_k</math> satisfying these conditions will fit the data given in the problem statement. Thus, to find minimal necessary and sufficient conditions on the value of <math>a</math>, we need only consider these <math>8</math> equations. As a result, <math>P(x)</math> with integer coefficients fitting the given data exists iff <math>k!</math> divides <math>2^k a</math> for <math>k = 0, 1, \ldots, 7</math>. In other words, it's necessary and sufficient that
| |
− |
| |
− | <center>
| |
− | <math>0! | a</math>,
| |
− |
| |
− | <math>1! | 2a</math>,
| |
− |
| |
− | <math>2! | 2^2 a</math>,
| |
− |
| |
− | <math>3! | 2^3 a</math>,
| |
− |
| |
− | <math>4! | 2^4 a</math>,
| |
− |
| |
− | <math>5! | 2^5 a</math>,
| |
| | | |
− | <math>6! | 2^6 a</math>, and | + | <math>-2a=-15Q(2)=9Q(4)=-15Q(6)=105Q(8).</math> |
| + | Thus, the least value of <math>a</math> must be the <math>\text{lcm}(15,9,15,105)</math>. |
| + | Solving, we receive <math>315</math>, so our answer is <math> \boxed{\textbf{(B)}\ 315} </math>. |
| | | |
− | <math>7! | 2^7 a</math>. | + | To complete the solution, we can let <math>a = 315</math>, and then try to find <math>Q(x)</math>. We know from the above calculation that <math>Q(2)=42, Q(4)=-70, Q(6)=42</math>, and <math>Q(8)=-6</math>. Then we can let <math>Q(x) = T(x)(x-2)(x-6)+42</math>, getting <math>T(4)=28, T(8)=-4</math>. Let <math>T(x)=L(x)(x-8)-4</math>, then <math>L(4)=-8</math>. Therefore, it is possible to choose <math>T(x) = -8(x-8)-4 = -8x + 60</math>, so the goal is accomplished. As a reference, the polynomial we get is |
− | </center> | |
| | | |
− | The last condition holds iff <math>7 \cdot 3 \cdot 5 \cdot 3 = 315</math> divides evenly into <math>a</math>. Since such <math>a</math> will also satisfy the first <math>7</math> conditions, our answer is <math> \boxed{\textbf{(B)}\ 315} </math>.
| + | <cmath>P(x) = (x-1)(x-3)(x-5)(x-7)((-8x + 60)(x-2)(x-6)+42) + 315</cmath> |
| + | <cmath> = -8 x^7+252 x^6-3248 x^5+22050 x^4-84392 x^3+179928 x^2-194592 x+80325 </cmath> |
| | | |
− | == See also ==
| |
− | {{AMC12 box|year=2010|num-b=20|num-a=22|ab=B}}
| |
| | | |
| [[Category:Intermediate Algebra Problems]] | | [[Category:Intermediate Algebra Problems]] |
| {{MAA Notice}} | | {{MAA Notice}} |
Problem 21
Let , and let be a polynomial with integer coefficients such that
, and
.
What is the smallest possible value of ?
Solution
We observe that because , if we define a new polynomial such that , has roots when ; namely, when .
Thus since has roots when , we can factor the product out of to obtain a new polynomial such that .
Then, plugging in values of we get
Thus, the least value of must be the .
Solving, we receive , so our answer is .
To complete the solution, we can let , and then try to find . We know from the above calculation that , and . Then we can let , getting . Let , then . Therefore, it is possible to choose , so the goal is accomplished. As a reference, the polynomial we get is
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.