Difference between revisions of "2003 AMC 10A Problems/Problem 18"

(Solution 2)
m (Solution 2)
Line 27: Line 27:
 
<math>\frac{2003}{2004}+\frac 1x+\frac{1}{x^2}=0</math>,  
 
<math>\frac{2003}{2004}+\frac 1x+\frac{1}{x^2}=0</math>,  
  
we see by [[Vieta's formulas]] that the sum of the roots is <math>-1  \Rightarrow\boxed{\mathrm{(B)}\ -1}</math>.
+
we see by [[Vieta's formulas]](with the same reasoning as above) that the sum of the roots is <math>-1  \Rightarrow\boxed{\mathrm{(B)}\ -1}</math>.
  
 
== See Also ==
 
== See Also ==

Revision as of 09:40, 21 June 2020

Problem

What is the sum of the reciprocals of the roots of the equation $\frac{2003}{2004}x+1+\frac{1}{x}=0$?

$\mathrm{(A) \ } -\frac{2004}{2003}\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } \frac{2003}{2004}\qquad \mathrm{(D) \ } 1\qquad \mathrm{(E) \ } \frac{2004}{2003}$

Solution 1

Multiplying both sides by $x$:

$\frac{2003}{2004}x^{2}+1x+1=0$

Let the roots be $a$ and $b$.

The problem is asking for $\frac{1}{a}+\frac{1}{b}= \frac{a+b}{ab}$

By Vieta's formulas:

$a+b=(-1)^{1}\frac{1}{\frac{2003}{2004}}=-\frac{2004}{2003}$

$ab=(-1)^{2}\frac{1}{\frac{2003}{2004}}=\frac{2004}{2003}$

So the answer is $\frac{a+b}{ab}=\frac{-\frac{2004}{2003}}{\frac{2004}{2003}}=-1 \Rightarrow\boxed{\mathrm{(B)}\ -1}$.

Solution 2

Dividing both sides by $x$,

$\frac{2003}{2004}+\frac 1x+\frac{1}{x^2}=0$,

we see by Vieta's formulas(with the same reasoning as above) that the sum of the roots is $-1  \Rightarrow\boxed{\mathrm{(B)}\ -1}$.

See Also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png